|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * Copyright (C) 1994, 1995 Waldorf GmbH | 
|  | * Copyright (C) 1994 - 2000 Ralf Baechle | 
|  | * Copyright (C) 1999, 2000 Silicon Graphics, Inc. | 
|  | * Copyright (C) 2000 FSMLabs, Inc. | 
|  | */ | 
|  | #ifndef _ASM_IO_H | 
|  | #define _ASM_IO_H | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #if 0 | 
|  | #include <linux/pagemap.h> | 
|  | #endif | 
|  | #include <asm/addrspace.h> | 
|  | #include <asm/byteorder.h> | 
|  |  | 
|  | /* | 
|  | * Slowdown I/O port space accesses for antique hardware. | 
|  | */ | 
|  | #undef CONF_SLOWDOWN_IO | 
|  |  | 
|  | /* | 
|  | * Sane hardware offers swapping of I/O space accesses in hardware; less | 
|  | * sane hardware forces software to fiddle with this ... | 
|  | */ | 
|  | #if defined(CONFIG_SWAP_IO_SPACE) && defined(__MIPSEB__) | 
|  |  | 
|  | #define __ioswab8(x) (x) | 
|  | #define __ioswab16(x) swab16(x) | 
|  | #define __ioswab32(x) swab32(x) | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define __ioswab8(x) (x) | 
|  | #define __ioswab16(x) (x) | 
|  | #define __ioswab32(x) (x) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This file contains the definitions for the MIPS counterpart of the | 
|  | * x86 in/out instructions. This heap of macros and C results in much | 
|  | * better code than the approach of doing it in plain C.  The macros | 
|  | * result in code that is to fast for certain hardware.  On the other | 
|  | * side the performance of the string functions should be improved for | 
|  | * sake of certain devices like EIDE disks that do highspeed polled I/O. | 
|  | * | 
|  | *   Ralf | 
|  | * | 
|  | * This file contains the definitions for the x86 IO instructions | 
|  | * inb/inw/inl/outb/outw/outl and the "string versions" of the same | 
|  | * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing" | 
|  | * versions of the single-IO instructions (inb_p/inw_p/..). | 
|  | * | 
|  | * This file is not meant to be obfuscating: it's just complicated | 
|  | * to (a) handle it all in a way that makes gcc able to optimize it | 
|  | * as well as possible and (b) trying to avoid writing the same thing | 
|  | * over and over again with slight variations and possibly making a | 
|  | * mistake somewhere. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * On MIPS I/O ports are memory mapped, so we access them using normal | 
|  | * load/store instructions. mips_io_port_base is the virtual address to | 
|  | * which all ports are being mapped.  For sake of efficiency some code | 
|  | * assumes that this is an address that can be loaded with a single lui | 
|  | * instruction, so the lower 16 bits must be zero.  Should be true on | 
|  | * on any sane architecture; generic code does not use this assumption. | 
|  | */ | 
|  | extern const unsigned long mips_io_port_base; | 
|  |  | 
|  | /* | 
|  | * Gcc will generate code to load the value of mips_io_port_base after each | 
|  | * function call which may be fairly wasteful in some cases.  So we don't | 
|  | * play quite by the book.  We tell gcc mips_io_port_base is a long variable | 
|  | * which solves the code generation issue.  Now we need to violate the | 
|  | * aliasing rules a little to make initialization possible and finally we | 
|  | * will need the barrier() to fight side effects of the aliasing chat. | 
|  | * This trickery will eventually collapse under gcc's optimizer.  Oh well. | 
|  | */ | 
|  | static inline void set_io_port_base(unsigned long base) | 
|  | { | 
|  | * (unsigned long *) &mips_io_port_base = base; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Thanks to James van Artsdalen for a better timing-fix than | 
|  | * the two short jumps: using outb's to a nonexistent port seems | 
|  | * to guarantee better timings even on fast machines. | 
|  | * | 
|  | * On the other hand, I'd like to be sure of a non-existent port: | 
|  | * I feel a bit unsafe about using 0x80 (should be safe, though) | 
|  | * | 
|  | *		Linus | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define __SLOW_DOWN_IO \ | 
|  | __asm__ __volatile__( \ | 
|  | "sb\t$0,0x80(%0)" \ | 
|  | : : "r" (mips_io_port_base)); | 
|  |  | 
|  | #ifdef CONF_SLOWDOWN_IO | 
|  | #ifdef REALLY_SLOW_IO | 
|  | #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; } | 
|  | #else | 
|  | #define SLOW_DOWN_IO __SLOW_DOWN_IO | 
|  | #endif | 
|  | #else | 
|  | #define SLOW_DOWN_IO | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Change virtual addresses to physical addresses and vv. | 
|  | * These are trivial on the 1:1 Linux/MIPS mapping | 
|  | */ | 
|  | extern inline phys_addr_t virt_to_phys(volatile void * address) | 
|  | { | 
|  | return CPHYSADDR(address); | 
|  | } | 
|  |  | 
|  | extern inline void * phys_to_virt(unsigned long address) | 
|  | { | 
|  | return (void *)KSEG0ADDR(address); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IO bus memory addresses are also 1:1 with the physical address | 
|  | */ | 
|  | extern inline unsigned long virt_to_bus(volatile void * address) | 
|  | { | 
|  | return CPHYSADDR(address); | 
|  | } | 
|  |  | 
|  | extern inline void * bus_to_virt(unsigned long address) | 
|  | { | 
|  | return (void *)KSEG0ADDR(address); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped | 
|  | * for the processor. | 
|  | */ | 
|  | extern unsigned long isa_slot_offset; | 
|  |  | 
|  | extern void * __ioremap(unsigned long offset, unsigned long size, unsigned long flags); | 
|  |  | 
|  | #if 0 | 
|  | extern inline void *ioremap(unsigned long offset, unsigned long size) | 
|  | { | 
|  | return __ioremap(offset, size, _CACHE_UNCACHED); | 
|  | } | 
|  |  | 
|  | extern inline void *ioremap_nocache(unsigned long offset, unsigned long size) | 
|  | { | 
|  | return __ioremap(offset, size, _CACHE_UNCACHED); | 
|  | } | 
|  |  | 
|  | extern void iounmap(void *addr); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * XXX We need system specific versions of these to handle EISA address bits | 
|  | * 24-31 on SNI. | 
|  | * XXX more SNI hacks. | 
|  | */ | 
|  | #define readb(addr) (*(volatile unsigned char *)(addr)) | 
|  | #define readw(addr) __ioswab16((*(volatile unsigned short *)(addr))) | 
|  | #define readl(addr) __ioswab32((*(volatile unsigned int *)(addr))) | 
|  | #define __raw_readb readb | 
|  | #define __raw_readw readw | 
|  | #define __raw_readl readl | 
|  |  | 
|  | #define writeb(b,addr) (*(volatile unsigned char *)(addr)) = (b) | 
|  | #define writew(b,addr) (*(volatile unsigned short *)(addr)) = (__ioswab16(b)) | 
|  | #define writel(b,addr) (*(volatile unsigned int *)(addr)) = (__ioswab32(b)) | 
|  | #define __raw_writeb writeb | 
|  | #define __raw_writew writew | 
|  | #define __raw_writel writel | 
|  |  | 
|  | #define memset_io(a,b,c)	memset((void *)(a),(b),(c)) | 
|  | #define memcpy_fromio(a,b,c)	memcpy((a),(void *)(b),(c)) | 
|  | #define memcpy_toio(a,b,c)	memcpy((void *)(a),(b),(c)) | 
|  |  | 
|  | /* END SNI HACKS ... */ | 
|  |  | 
|  | /* | 
|  | * ISA space is 'always mapped' on currently supported MIPS systems, no need | 
|  | * to explicitly ioremap() it. The fact that the ISA IO space is mapped | 
|  | * to PAGE_OFFSET is pure coincidence - it does not mean ISA values | 
|  | * are physical addresses. The following constant pointer can be | 
|  | * used as the IO-area pointer (it can be iounmapped as well, so the | 
|  | * analogy with PCI is quite large): | 
|  | */ | 
|  | #define __ISA_IO_base ((char *)(PAGE_OFFSET)) | 
|  |  | 
|  | #define isa_readb(a) readb(a) | 
|  | #define isa_readw(a) readw(a) | 
|  | #define isa_readl(a) readl(a) | 
|  | #define isa_writeb(b,a) writeb(b,a) | 
|  | #define isa_writew(w,a) writew(w,a) | 
|  | #define isa_writel(l,a) writel(l,a) | 
|  |  | 
|  | #define isa_memset_io(a,b,c)     memset_io((a),(b),(c)) | 
|  | #define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),(b),(c)) | 
|  | #define isa_memcpy_toio(a,b,c)   memcpy_toio((a),(b),(c)) | 
|  |  | 
|  | /* | 
|  | * We don't have csum_partial_copy_fromio() yet, so we cheat here and | 
|  | * just copy it. The net code will then do the checksum later. | 
|  | */ | 
|  | #define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len)) | 
|  | #define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(b),(c),(d)) | 
|  |  | 
|  | static inline int check_signature(unsigned long io_addr, | 
|  | const unsigned char *signature, int length) | 
|  | { | 
|  | int retval = 0; | 
|  | do { | 
|  | if (readb(io_addr) != *signature) | 
|  | goto out; | 
|  | io_addr++; | 
|  | signature++; | 
|  | length--; | 
|  | } while (length); | 
|  | retval = 1; | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  | #define isa_check_signature(io, s, l) check_signature(i,s,l) | 
|  |  | 
|  | /* | 
|  | * Talk about misusing macros.. | 
|  | */ | 
|  |  | 
|  | #define __OUT1(s) \ | 
|  | extern inline void __out##s(unsigned int value, unsigned int port) { | 
|  |  | 
|  | #define __OUT2(m) \ | 
|  | __asm__ __volatile__ ("s" #m "\t%0,%1(%2)" | 
|  |  | 
|  | #define __OUT(m,s,w) \ | 
|  | __OUT1(s) __OUT2(m) : : "r" (__ioswab##w(value)), "i" (0), "r" (mips_io_port_base+port)); } \ | 
|  | __OUT1(s##c) __OUT2(m) : : "r" (__ioswab##w(value)), "ir" (port), "r" (mips_io_port_base)); } \ | 
|  | __OUT1(s##_p) __OUT2(m) : : "r" (__ioswab##w(value)), "i" (0), "r" (mips_io_port_base+port)); \ | 
|  | SLOW_DOWN_IO; } \ | 
|  | __OUT1(s##c_p) __OUT2(m) : : "r" (__ioswab##w(value)), "ir" (port), "r" (mips_io_port_base)); \ | 
|  | SLOW_DOWN_IO; } | 
|  |  | 
|  | #define __IN1(t,s) \ | 
|  | extern __inline__ t __in##s(unsigned int port) { t _v; | 
|  |  | 
|  | /* | 
|  | * Required nops will be inserted by the assembler | 
|  | */ | 
|  | #define __IN2(m) \ | 
|  | __asm__ __volatile__ ("l" #m "\t%0,%1(%2)" | 
|  |  | 
|  | #define __IN(t,m,s,w) \ | 
|  | __IN1(t,s) __IN2(m) : "=r" (_v) : "i" (0), "r" (mips_io_port_base+port)); return __ioswab##w(_v); } \ | 
|  | __IN1(t,s##c) __IN2(m) : "=r" (_v) : "ir" (port), "r" (mips_io_port_base)); return __ioswab##w(_v); } \ | 
|  | __IN1(t,s##_p) __IN2(m) : "=r" (_v) : "i" (0), "r" (mips_io_port_base+port)); SLOW_DOWN_IO; return __ioswab##w(_v); } \ | 
|  | __IN1(t,s##c_p) __IN2(m) : "=r" (_v) : "ir" (port), "r" (mips_io_port_base)); SLOW_DOWN_IO; return __ioswab##w(_v); } | 
|  |  | 
|  | #define __INS1(s) \ | 
|  | extern inline void __ins##s(unsigned int port, void * addr, unsigned long count) { | 
|  |  | 
|  | #define __INS2(m) \ | 
|  | if (count) \ | 
|  | __asm__ __volatile__ ( \ | 
|  | ".set\tnoreorder\n\t" \ | 
|  | ".set\tnoat\n" \ | 
|  | "1:\tl" #m "\t$1,%4(%5)\n\t" \ | 
|  | "subu\t%1,1\n\t" \ | 
|  | "s" #m "\t$1,(%0)\n\t" \ | 
|  | "bne\t$0,%1,1b\n\t" \ | 
|  | "addiu\t%0,%6\n\t" \ | 
|  | ".set\tat\n\t" \ | 
|  | ".set\treorder" | 
|  |  | 
|  | #define __INS(m,s,i) \ | 
|  | __INS1(s) __INS2(m) \ | 
|  | : "=r" (addr), "=r" (count) \ | 
|  | : "0" (addr), "1" (count), "i" (0), \ | 
|  | "r" (mips_io_port_base+port), "I" (i) \ | 
|  | : "$1");} \ | 
|  | __INS1(s##c) __INS2(m) \ | 
|  | : "=r" (addr), "=r" (count) \ | 
|  | : "0" (addr), "1" (count), "ir" (port), \ | 
|  | "r" (mips_io_port_base), "I" (i) \ | 
|  | : "$1");} | 
|  |  | 
|  | #define __OUTS1(s) \ | 
|  | extern inline void __outs##s(unsigned int port, const void * addr, unsigned long count) { | 
|  |  | 
|  | #define __OUTS2(m) \ | 
|  | if (count) \ | 
|  | __asm__ __volatile__ ( \ | 
|  | ".set\tnoreorder\n\t" \ | 
|  | ".set\tnoat\n" \ | 
|  | "1:\tl" #m "\t$1,(%0)\n\t" \ | 
|  | "subu\t%1,1\n\t" \ | 
|  | "s" #m "\t$1,%4(%5)\n\t" \ | 
|  | "bne\t$0,%1,1b\n\t" \ | 
|  | "addiu\t%0,%6\n\t" \ | 
|  | ".set\tat\n\t" \ | 
|  | ".set\treorder" | 
|  |  | 
|  | #define __OUTS(m,s,i) \ | 
|  | __OUTS1(s) __OUTS2(m) \ | 
|  | : "=r" (addr), "=r" (count) \ | 
|  | : "0" (addr), "1" (count), "i" (0), "r" (mips_io_port_base+port), "I" (i) \ | 
|  | : "$1");} \ | 
|  | __OUTS1(s##c) __OUTS2(m) \ | 
|  | : "=r" (addr), "=r" (count) \ | 
|  | : "0" (addr), "1" (count), "ir" (port), "r" (mips_io_port_base), "I" (i) \ | 
|  | : "$1");} | 
|  |  | 
|  | __IN(unsigned char,b,b,8) | 
|  | __IN(unsigned short,h,w,16) | 
|  | __IN(unsigned int,w,l,32) | 
|  |  | 
|  | __OUT(b,b,8) | 
|  | __OUT(h,w,16) | 
|  | __OUT(w,l,32) | 
|  |  | 
|  | __INS(b,b,1) | 
|  | __INS(h,w,2) | 
|  | __INS(w,l,4) | 
|  |  | 
|  | __OUTS(b,b,1) | 
|  | __OUTS(h,w,2) | 
|  | __OUTS(w,l,4) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Note that due to the way __builtin_constant_p() works, you | 
|  | *  - can't use it inside an inline function (it will never be true) | 
|  | *  - you don't have to worry about side effects within the __builtin.. | 
|  | */ | 
|  | #define outb(val,port) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __outbc((val),(port)) : \ | 
|  | __outb((val),(port))) | 
|  |  | 
|  | #define inb(port) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __inbc(port) : \ | 
|  | __inb(port)) | 
|  |  | 
|  | #define outb_p(val,port) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __outbc_p((val),(port)) : \ | 
|  | __outb_p((val),(port))) | 
|  |  | 
|  | #define inb_p(port) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __inbc_p(port) : \ | 
|  | __inb_p(port)) | 
|  |  | 
|  | #define outw(val,port) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __outwc((val),(port)) : \ | 
|  | __outw((val),(port))) | 
|  |  | 
|  | #define inw(port) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __inwc(port) : \ | 
|  | __inw(port)) | 
|  |  | 
|  | #define outw_p(val,port) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __outwc_p((val),(port)) : \ | 
|  | __outw_p((val),(port))) | 
|  |  | 
|  | #define inw_p(port) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __inwc_p(port) : \ | 
|  | __inw_p(port)) | 
|  |  | 
|  | #define outl(val,port) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __outlc((val),(port)) : \ | 
|  | __outl((val),(port))) | 
|  |  | 
|  | #define inl(port) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __inlc(port) : \ | 
|  | __inl(port)) | 
|  |  | 
|  | #define outl_p(val,port) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __outlc_p((val),(port)) : \ | 
|  | __outl_p((val),(port))) | 
|  |  | 
|  | #define inl_p(port) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __inlc_p(port) : \ | 
|  | __inl_p(port)) | 
|  |  | 
|  |  | 
|  | #define outsb(port,addr,count) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __outsbc((port),(addr),(count)) : \ | 
|  | __outsb ((port),(addr),(count))) | 
|  |  | 
|  | #define insb(port,addr,count) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __insbc((port),(addr),(count)) : \ | 
|  | __insb((port),(addr),(count))) | 
|  |  | 
|  | #define outsw(port,addr,count) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __outswc((port),(addr),(count)) : \ | 
|  | __outsw ((port),(addr),(count))) | 
|  |  | 
|  | #define insw(port,addr,count) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __inswc((port),(addr),(count)) : \ | 
|  | __insw((port),(addr),(count))) | 
|  |  | 
|  | #define outsl(port,addr,count) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __outslc((port),(addr),(count)) : \ | 
|  | __outsl ((port),(addr),(count))) | 
|  |  | 
|  | #define insl(port,addr,count) \ | 
|  | ((__builtin_constant_p((port)) && (port) < 32768) ? \ | 
|  | __inslc((port),(addr),(count)) : \ | 
|  | __insl((port),(addr),(count))) | 
|  |  | 
|  | #define IO_SPACE_LIMIT 0xffff | 
|  |  | 
|  | /* | 
|  | * The caches on some architectures aren't dma-coherent and have need to | 
|  | * handle this in software.  There are three types of operations that | 
|  | * can be applied to dma buffers. | 
|  | * | 
|  | *  - dma_cache_wback_inv(start, size) makes caches and coherent by | 
|  | *    writing the content of the caches back to memory, if necessary. | 
|  | *    The function also invalidates the affected part of the caches as | 
|  | *    necessary before DMA transfers from outside to memory. | 
|  | *  - dma_cache_wback(start, size) makes caches and coherent by | 
|  | *    writing the content of the caches back to memory, if necessary. | 
|  | *    The function also invalidates the affected part of the caches as | 
|  | *    necessary before DMA transfers from outside to memory. | 
|  | *  - dma_cache_inv(start, size) invalidates the affected parts of the | 
|  | *    caches.  Dirty lines of the caches may be written back or simply | 
|  | *    be discarded.  This operation is necessary before dma operations | 
|  | *    to the memory. | 
|  | */ | 
|  | extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); | 
|  | extern void (*_dma_cache_wback)(unsigned long start, unsigned long size); | 
|  | extern void (*_dma_cache_inv)(unsigned long start, unsigned long size); | 
|  |  | 
|  | #define dma_cache_wback_inv(start,size)	_dma_cache_wback_inv(start,size) | 
|  | #define dma_cache_wback(start,size)	_dma_cache_wback(start,size) | 
|  | #define dma_cache_inv(start,size)	_dma_cache_inv(start,size) | 
|  |  | 
|  | static inline void sync(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a physical address and a length, return a virtual address | 
|  | * that can be used to access the memory range with the caching | 
|  | * properties specified by "flags". | 
|  | */ | 
|  | #define MAP_NOCACHE	(0) | 
|  | #define MAP_WRCOMBINE	(0) | 
|  | #define MAP_WRBACK	(0) | 
|  | #define MAP_WRTHROUGH	(0) | 
|  |  | 
|  | static inline void * | 
|  | map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags) | 
|  | { | 
|  | return (void *)paddr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take down a mapping set up by map_physmem(). | 
|  | */ | 
|  | static inline void unmap_physmem(void *vaddr, unsigned long flags) | 
|  | { | 
|  |  | 
|  | } | 
|  |  | 
|  | #endif /* _ASM_IO_H */ |