| /* | 
 |  * (C) Copyright 2001 | 
 |  * Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc. | 
 |  * | 
 |  * See file CREDITS for list of people who contributed to this | 
 |  * project. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation; either version 2 of | 
 |  * the License, or (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | 
 |  * MA 02111-1307 USA | 
 |  */ | 
 |  | 
 | /* sdram_init.c - automatic memory sizing */ | 
 |  | 
 | #include <common.h> | 
 | #include <74xx_7xx.h> | 
 | #include <galileo/memory.h> | 
 | #include <galileo/pci.h> | 
 | #include <galileo/gt64260R.h> | 
 | #include <net.h> | 
 |  | 
 | #include "eth.h" | 
 | #include "mpsc.h" | 
 | #include "i2c.h" | 
 | #include "64260.h" | 
 |  | 
 | /* #define	DEBUG */ | 
 | #define	MAP_PCI | 
 |  | 
 | #ifdef DEBUG | 
 | #define DP(x) x | 
 | #else | 
 | #define DP(x) | 
 | #endif | 
 |  | 
 | #define GB         (1 << 30) | 
 |  | 
 | /* structure to store the relevant information about an sdram bank */ | 
 | typedef struct sdram_info { | 
 | 	uchar drb_size; | 
 | 	uchar registered, ecc; | 
 | 	uchar tpar; | 
 | 	uchar tras_clocks; | 
 | 	uchar burst_len; | 
 | 	uchar banks, slot; | 
 | 	int size;	/* detected size, not from I2C but from dram_size() */ | 
 | } sdram_info_t; | 
 |  | 
 | #ifdef DEBUG | 
 | void dump_dimm_info(struct sdram_info *d) | 
 | { | 
 |     static const char *ecc_legend[]={""," Parity"," ECC"}; | 
 |     printf("dimm%s %sDRAM: %dMibytes:\n", | 
 | 	    ecc_legend[d->ecc], | 
 | 	    d->registered?"R":"", | 
 | 	    (d->size>>20)); | 
 |     printf("  drb=%d tpar=%d tras=%d burstlen=%d banks=%d slot=%d\n", | 
 | 	    d->drb_size, d->tpar, d->tras_clocks, d->burst_len, | 
 | 	    d->banks, d->slot); | 
 | } | 
 | #endif | 
 |  | 
 | static int | 
 | memory_map_bank(unsigned int bankNo, | 
 | 		unsigned int bankBase, | 
 | 		unsigned int bankLength) | 
 | { | 
 | #ifdef DEBUG | 
 | 	if (bankLength > 0) { | 
 | 		printf("mapping bank %d at %08x - %08x\n", | 
 | 		       bankNo, bankBase, bankBase + bankLength - 1); | 
 | 	} else { | 
 | 		printf("unmapping bank %d\n", bankNo); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	memoryMapBank(bankNo, bankBase, bankLength); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef MAP_PCI | 
 | static int | 
 | memory_map_bank_pci(unsigned int bankNo, | 
 | 		unsigned int bankBase, | 
 | 		unsigned int bankLength) | 
 | { | 
 | 	PCI_HOST host; | 
 | 	for (host=PCI_HOST0;host<=PCI_HOST1;host++) { | 
 | 		const int features= | 
 | 			PREFETCH_ENABLE | | 
 | 			DELAYED_READ_ENABLE | | 
 | 			AGGRESSIVE_PREFETCH | | 
 | 			READ_LINE_AGGRESSIVE_PREFETCH | | 
 | 			READ_MULTI_AGGRESSIVE_PREFETCH | | 
 | 			MAX_BURST_4 | | 
 | 			PCI_NO_SWAP; | 
 |  | 
 | 		pciMapMemoryBank(host, bankNo, bankBase, bankLength); | 
 |  | 
 | 		pciSetRegionSnoopMode(host, bankNo, PCI_SNOOP_WB, bankBase, | 
 | 				bankLength); | 
 |  | 
 | 		pciSetRegionFeatures(host, bankNo, features, bankBase, bankLength); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | /* much of this code is based on (or is) the code in the pip405 port */ | 
 | /* thanks go to the authors of said port - Josh */ | 
 |  | 
 |  | 
 | /* | 
 |  * translate ns.ns/10 coding of SPD timing values | 
 |  * into 10 ps unit values | 
 |  */ | 
 | static inline unsigned short | 
 | NS10to10PS(unsigned char spd_byte) | 
 | { | 
 | 	unsigned short ns, ns10; | 
 |  | 
 | 	/* isolate upper nibble */ | 
 | 	ns = (spd_byte >> 4) & 0x0F; | 
 | 	/* isolate lower nibble */ | 
 | 	ns10 = (spd_byte & 0x0F); | 
 |  | 
 | 	return(ns*100 + ns10*10); | 
 | } | 
 |  | 
 | /* | 
 |  * translate ns coding of SPD timing values | 
 |  * into 10 ps unit values | 
 |  */ | 
 | static inline unsigned short | 
 | NSto10PS(unsigned char spd_byte) | 
 | { | 
 | 	return(spd_byte*100); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ZUMA_V2 | 
 | static int | 
 | check_dimm(uchar slot, sdram_info_t *info) | 
 | { | 
 | 	/* assume 2 dimms, 2 banks each 256M - we dont have an | 
 | 	 * dimm i2c so rely on the detection routines later */ | 
 |  | 
 | 	memset(info, 0, sizeof(*info)); | 
 |  | 
 | 	info->slot = slot; | 
 | 	info->banks = 2;	/* Detect later */ | 
 | 	    info->registered = 0; | 
 | 	info->drb_size = 32;	/* 16 - 256MBit, 32 - 512MBit | 
 | 				   but doesn't matter, both do same | 
 | 				   thing in setup_sdram() */ | 
 | 	    info->tpar = 3; | 
 | 	    info->tras_clocks = 5; | 
 | 	    info->burst_len = 4; | 
 | #ifdef CONFIG_ECC | 
 | 	info->ecc = 0;		/* Detect later */ | 
 | #endif /* CONFIG_ECC */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | #elif defined(CONFIG_P3G4) | 
 |  | 
 | static int | 
 | check_dimm(uchar slot, sdram_info_t *info) | 
 | { | 
 | 	memset(info, 0, sizeof(*info)); | 
 |  | 
 | 	if (slot) | 
 | 		return 0; | 
 |  | 
 | 	info->slot = slot; | 
 | 	info->banks = 1; | 
 | 	info->registered = 0; | 
 | 	info->drb_size = 4; | 
 | 	info->tpar = 3; | 
 | 	info->tras_clocks = 6; | 
 | 	info->burst_len = 4; | 
 | #ifdef CONFIG_ECC | 
 | 	info->ecc = 2; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | #else /* ! CONFIG_ZUMA_V2 && ! CONFIG_P3G4*/ | 
 |  | 
 | /* This code reads the SPD chip on the sdram and populates | 
 |  * the array which is passed in with the relevant information */ | 
 | static int | 
 | check_dimm(uchar slot, sdram_info_t *info) | 
 | { | 
 | 	DECLARE_GLOBAL_DATA_PTR; | 
 | 	uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR; | 
 | 	int ret; | 
 | 	uchar rows, cols, sdram_banks, supp_cal, width, cal_val; | 
 | 	ulong tmemclk; | 
 | 	uchar trp_clocks, trcd_clocks; | 
 | 	uchar data[128]; | 
 |  | 
 | 	get_clocks (); | 
 |  | 
 | 	tmemclk = 1000000000 / (gd->bus_clk / 100);  /* in 10 ps units */ | 
 |  | 
 | #ifdef CONFIG_EVB64260_750CX | 
 | 	if (0 != slot) { | 
 | 		printf("check_dimm: The EVB-64260-750CX only has 1 DIMM,"); | 
 | 		printf("            called with slot=%d insetad!\n", slot); | 
 | 		return 0; | 
 | 	} | 
 | #endif | 
 | 	DP(puts("before i2c read\n")); | 
 |  | 
 | 	ret = i2c_read(addr, 0, 128, data, 0); | 
 |  | 
 | 	DP(puts("after i2c read\n")); | 
 |  | 
 | 	/* zero all the values */ | 
 | 	memset(info, 0, sizeof(*info)); | 
 |  | 
 | 	if (ret) { | 
 | 		DP(printf("No DIMM in slot %d [err = %x]\n", slot, ret)); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* first, do some sanity checks */ | 
 | 	if (data[2] != 0x4) { | 
 | 		printf("Not SDRAM in slot %d\n", slot); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* get various information */ | 
 | 	rows = data[3]; | 
 | 	cols = data[4]; | 
 | 	info->banks = data[5]; | 
 | 	sdram_banks = data[17]; | 
 | 	width = data[13] & 0x7f; | 
 |  | 
 | 	DP(printf("sdram_banks: %d, banks: %d\n", sdram_banks, info->banks)); | 
 |  | 
 | 	/* check if the memory is registered */ | 
 | 	if (data[21] & (BIT1 | BIT4)) | 
 | 		info->registered = 1; | 
 |  | 
 | #ifdef CONFIG_ECC | 
 | 	/* check for ECC/parity [0 = none, 1 = parity, 2 = ecc] */ | 
 | 	info->ecc = (data[11] & 2) >> 1; | 
 | #endif | 
 |  | 
 | 	/* bit 1 is CL2, bit 2 is CL3 */ | 
 | 	supp_cal = (data[18] & 0x6) >> 1; | 
 |  | 
 | 	/* compute the relevant clock values */ | 
 | 	trp_clocks = (NSto10PS(data[27])+(tmemclk-1)) / tmemclk; | 
 | 	trcd_clocks = (NSto10PS(data[29])+(tmemclk-1)) / tmemclk; | 
 | 	info->tras_clocks = (NSto10PS(data[30])+(tmemclk-1)) / tmemclk; | 
 |  | 
 | 	DP(printf("trp = %d\ntrcd_clocks = %d\ntras_clocks = %d\n", | 
 | 		  trp_clocks, trcd_clocks, info->tras_clocks)); | 
 |  | 
 | 	/* try a CAS latency of 3 first... */ | 
 | 	cal_val = 0; | 
 | 	if (supp_cal & 3) { | 
 | 		if (NS10to10PS(data[9]) <= tmemclk) | 
 | 			cal_val = 3; | 
 | 	} | 
 |  | 
 | 	/* then 2... */ | 
 | 	if (supp_cal & 2) { | 
 | 		if (NS10to10PS(data[23]) <= tmemclk) | 
 | 			cal_val = 2; | 
 | 	} | 
 |  | 
 | 	DP(printf("cal_val = %d\n", cal_val)); | 
 |  | 
 | 	/* bummer, did't work... */ | 
 | 	if (cal_val == 0) { | 
 | 		DP(printf("Couldn't find a good CAS latency\n")); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* get the largest delay -- these values need to all be the same | 
 | 	 * see Res#6 */ | 
 | 	info->tpar = cal_val; | 
 | 	if (trp_clocks > info->tpar) | 
 | 		info->tpar = trp_clocks; | 
 | 	if (trcd_clocks > info->tpar) | 
 | 		info->tpar = trcd_clocks; | 
 |  | 
 | 	DP(printf("tpar set to: %d\n", info->tpar)); | 
 |  | 
 | #ifdef CFG_BROKEN_CL2 | 
 | 	if (info->tpar == 2){ | 
 | 		info->tpar = 3; | 
 | 		DP(printf("tpar fixed-up to: %d\n", info->tpar)); | 
 | 	} | 
 | #endif | 
 | 	/* compute the module DRB size */ | 
 | 	info->drb_size = (((1 << (rows + cols)) * sdram_banks) * width) / _16M; | 
 |  | 
 | 	DP(printf("drb_size set to: %d\n", info->drb_size)); | 
 |  | 
 | 	/* find the burst len */ | 
 | 	info->burst_len = data[16] & 0xf; | 
 | 	if ((info->burst_len & 8) == 8) { | 
 | 		info->burst_len = 1; | 
 | 	} else if ((info->burst_len & 4) == 4) { | 
 | 		info->burst_len = 0; | 
 | 	} else { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	info->slot = slot; | 
 | 	return 0; | 
 | } | 
 | #endif /* ! CONFIG_ZUMA_V2 */ | 
 |  | 
 | static int | 
 | setup_sdram_common(sdram_info_t info[2]) | 
 | { | 
 | 	ulong tmp; | 
 | 	int tpar=2, tras_clocks=5, registered=1, ecc=2; | 
 |  | 
 | 	if(!info[0].banks && !info[1].banks) return 0; | 
 |  | 
 | 	if(info[0].banks) { | 
 | 	    if(info[0].tpar>tpar) tpar=info[0].tpar; | 
 | 	    if(info[0].tras_clocks>tras_clocks) tras_clocks=info[0].tras_clocks; | 
 | 	    if(!info[0].registered) registered=0; | 
 | 	    if(info[0].ecc!=2) ecc=0; | 
 | 	} | 
 |  | 
 | 	if(info[1].banks) { | 
 | 	    if(info[1].tpar>tpar) tpar=info[1].tpar; | 
 | 	    if(info[1].tras_clocks>tras_clocks) tras_clocks=info[1].tras_clocks; | 
 | 	    if(!info[1].registered) registered=0; | 
 | 	    if(info[1].ecc!=2) ecc=0; | 
 | 	} | 
 |  | 
 | 	/* SDRAM configuration */ | 
 | 	tmp = GTREGREAD(SDRAM_CONFIGURATION); | 
 |  | 
 | 	/* Turn on physical interleave if both DIMMs | 
 | 	 * have even numbers of banks. */ | 
 | 	if( (info[0].banks == 0 || info[0].banks == 2) && | 
 | 	    (info[1].banks == 0 || info[1].banks == 2) ) { | 
 | 	    /* physical interleave on */ | 
 | 	    tmp &= ~(1 << 15); | 
 | 	} else { | 
 | 	    /* physical interleave off */ | 
 | 	    tmp |= (1 << 15); | 
 | 	} | 
 |  | 
 | 	tmp |= (registered << 17); | 
 |  | 
 | 	/* Use buffer 1 to return read data to the CPU | 
 | 	 * See Res #12 */ | 
 | 	tmp |= (1 << 26); | 
 |  | 
 | 	GT_REG_WRITE(SDRAM_CONFIGURATION, tmp); | 
 | 	DP(printf("SDRAM config: %08x\n", | 
 | 		GTREGREAD(SDRAM_CONFIGURATION))); | 
 |  | 
 | 	/* SDRAM timing */ | 
 | 	tmp = (((tpar == 3) ? 2 : 1) | | 
 | 	       (((tpar == 3) ? 2 : 1) << 2) | | 
 | 	       (((tpar == 3) ? 2 : 1) << 4) | | 
 | 	       (tras_clocks << 8)); | 
 |  | 
 | #ifdef CONFIG_ECC | 
 | 	/* Setup ECC */ | 
 | 	if (ecc == 2) tmp |= 1<<13; | 
 | #endif /* CONFIG_ECC */ | 
 |  | 
 | 	GT_REG_WRITE(SDRAM_TIMING, tmp); | 
 | 	DP(printf("SDRAM timing: %08x (%d,%d,%d,%d)\n", | 
 | 		GTREGREAD(SDRAM_TIMING), tpar,tpar,tpar,tras_clocks)); | 
 |  | 
 | 	/* SDRAM address decode register */ | 
 | 	/* program this with the default value */ | 
 | 	GT_REG_WRITE(SDRAM_ADDRESS_DECODE, 0x2); | 
 | 	DP(printf("SDRAM decode: %08x\n", | 
 | 		GTREGREAD(SDRAM_ADDRESS_DECODE))); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* sets up the GT properly with information passed in */ | 
 | static int | 
 | setup_sdram(sdram_info_t *info) | 
 | { | 
 | 	ulong tmp, check; | 
 | 	ulong *addr = 0; | 
 | 	int i; | 
 |  | 
 | 	/* sanity checking */ | 
 | 	if (! info->banks) return 0; | 
 |  | 
 | 	/* ---------------------------- */ | 
 | 	/* Program the GT with the discovered data */ | 
 |  | 
 | 	/* bank parameters */ | 
 | 	tmp = (0xf<<16);	/* leave all virt bank pages open */ | 
 |  | 
 | 	DP(printf("drb_size: %d\n", info->drb_size)); | 
 | 	switch (info->drb_size) { | 
 | 	case 1: | 
 | 		tmp |= (1 << 14); | 
 | 		break; | 
 | 	case 4: | 
 | 	case 8: | 
 | 		tmp |= (2 << 14); | 
 | 		break; | 
 | 	case 16: | 
 | 	case 32: | 
 | 		tmp |= (3 << 14); | 
 | 		break; | 
 | 	default: | 
 | 		printf("Error in dram size calculation\n"); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* SDRAM bank parameters */ | 
 | 	/* the param registers for slot 1 (banks 2+3) are offset by 0x8 */ | 
 | 	GT_REG_WRITE(SDRAM_BANK0PARAMETERS + (info->slot * 0x8), tmp); | 
 | 	GT_REG_WRITE(SDRAM_BANK1PARAMETERS + (info->slot * 0x8), tmp); | 
 | 	DP(printf("SDRAM bankparam slot %d (bank %d+%d): %08lx\n", info->slot, info->slot*2, (info->slot*2)+1, tmp)); | 
 |  | 
 | 	/* set the SDRAM configuration for each bank */ | 
 | 	for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) { | 
 | 		DP(printf("*** Running a MRS cycle for bank %d ***\n", i)); | 
 |  | 
 | 		/* map the bank */ | 
 | 		memory_map_bank(i, 0, GB/4); | 
 |  | 
 | 		/* set SDRAM mode */ | 
 | 		GT_REG_WRITE(SDRAM_OPERATION_MODE, 0x3); | 
 | 		check = GTREGREAD(SDRAM_OPERATION_MODE); | 
 |  | 
 | 		/* dummy write */ | 
 | 		*addr = 0; | 
 |  | 
 | 		/* wait for the command to complete */ | 
 | 		while ((GTREGREAD(SDRAM_OPERATION_MODE) & (1 << 31)) == 0) | 
 | 			; | 
 |  | 
 | 		/* switch back to normal operation mode */ | 
 | 		GT_REG_WRITE(SDRAM_OPERATION_MODE, 0); | 
 | 		check = GTREGREAD(SDRAM_OPERATION_MODE); | 
 |  | 
 | 		/* unmap the bank */ | 
 | 		memory_map_bank(i, 0, 0); | 
 | 		DP(printf("*** MRS cycle for bank %d done ***\n", i)); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check memory range for valid RAM. A simple memory test determines | 
 |  * the actually available RAM size between addresses `base' and | 
 |  * `base + maxsize'. Some (not all) hardware errors are detected: | 
 |  * - short between address lines | 
 |  * - short between data lines | 
 |  */ | 
 | static long int | 
 | dram_size(long int *base, long int maxsize) | 
 | { | 
 |     volatile long int	 *addr, *b=base; | 
 |     long int	 cnt, val, save1, save2; | 
 |  | 
 | #define STARTVAL (1<<20)	/* start test at 1M */ | 
 |     for (cnt = STARTVAL/sizeof(long); cnt < maxsize/sizeof(long); cnt <<= 1) { | 
 | 	    addr = base + cnt;	/* pointer arith! */ | 
 |  | 
 | 	    save1=*addr;	/* save contents of addr */ | 
 | 	    save2=*b;		/* save contents of base */ | 
 |  | 
 | 	    *addr=cnt;		/* write cnt to addr */ | 
 | 	    *b=0;		/* put null at base */ | 
 |  | 
 | 	    /* check at base address */ | 
 | 	    if ((*b) != 0) { | 
 | 		*addr=save1;	/* restore *addr */ | 
 | 		*b=save2;	/* restore *b */ | 
 | 		return (0); | 
 | 	    } | 
 | 	    val = *addr;	/* read *addr */ | 
 |  | 
 | 	    *addr=save1; | 
 | 	    *b=save2; | 
 |  | 
 | 	    if (val != cnt) { | 
 | 		    /* fix boundary condition.. STARTVAL means zero */ | 
 | 		    if(cnt==STARTVAL/sizeof(long)) cnt=0; | 
 | 		    return (cnt * sizeof(long)); | 
 | 	    } | 
 |     } | 
 |     return maxsize; | 
 | } | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | /* U-Boot interface function to SDRAM init - this is where all the | 
 |  * controlling logic happens */ | 
 | long int | 
 | initdram(int board_type) | 
 | { | 
 | 	ulong checkbank[4] = { [0 ... 3] = 0 }; | 
 | 	int bank_no; | 
 | 	ulong total; | 
 | 	int nhr; | 
 | 	sdram_info_t dimm_info[2]; | 
 |  | 
 |  | 
 | 	/* first, use the SPD to get info about the SDRAM */ | 
 |  | 
 | 	/* check the NHR bit and skip mem init if it's already done */ | 
 | 	nhr = get_hid0() & (1 << 16); | 
 |  | 
 | 	if (nhr) { | 
 | 		printf("Skipping SDRAM setup due to NHR bit being set\n"); | 
 | 	} else { | 
 | 		/* DIMM0 */ | 
 | 		check_dimm(0, &dimm_info[0]); | 
 |  | 
 | 		/* DIMM1 */ | 
 | #ifndef CONFIG_EVB64260_750CX /* EVB64260_750CX has only 1 DIMM */ | 
 | 		check_dimm(1, &dimm_info[1]); | 
 | #else /* CONFIG_EVB64260_750CX */ | 
 | 		memset(&dimm_info[1], 0, sizeof(sdram_info_t)); | 
 | #endif | 
 |  | 
 | 		/* unmap all banks */ | 
 | 		memory_map_bank(0, 0, 0); | 
 | 		memory_map_bank(1, 0, 0); | 
 | 		memory_map_bank(2, 0, 0); | 
 | 		memory_map_bank(3, 0, 0); | 
 |  | 
 | 		/* Now, program the GT with the correct values */ | 
 | 		if (setup_sdram_common(dimm_info)) { | 
 | 			printf("Setup common failed.\n"); | 
 | 		} | 
 |  | 
 | 		if (setup_sdram(&dimm_info[0])) { | 
 | 			printf("Setup for DIMM1 failed.\n"); | 
 | 		} | 
 |  | 
 | 		if (setup_sdram(&dimm_info[1])) { | 
 | 			printf("Setup for DIMM2 failed.\n"); | 
 | 		} | 
 |  | 
 | 		/* set the NHR bit */ | 
 | 		set_hid0(get_hid0() | (1 << 16)); | 
 | 	} | 
 | 	/* next, size the SDRAM banks */ | 
 |  | 
 | 	total = 0; | 
 | 	if (dimm_info[0].banks > 0) checkbank[0] = 1; | 
 | 	if (dimm_info[0].banks > 1) checkbank[1] = 1; | 
 | 	if (dimm_info[0].banks > 2) | 
 | 		printf("Error, SPD claims DIMM1 has >2 banks\n"); | 
 |  | 
 | 	if (dimm_info[1].banks > 0) checkbank[2] = 1; | 
 | 	if (dimm_info[1].banks > 1) checkbank[3] = 1; | 
 | 	if (dimm_info[1].banks > 2) | 
 | 		printf("Error, SPD claims DIMM2 has >2 banks\n"); | 
 |  | 
 | 	/* Generic dram sizer: works even if we don't have i2c DIMMs, | 
 | 	 * as long as the timing settings are more or less correct */ | 
 |  | 
 | 	/* | 
 | 	 * pass 1: size all the banks, using first bat (0-256M) | 
 | 	 * 	   limitation: we only support 256M per bank due to | 
 | 	 *  	   us only having 1 BAT for all DRAM | 
 | 	 */ | 
 | 	for (bank_no = 0; bank_no < CFG_DRAM_BANKS; bank_no++) { | 
 | 		/* skip over banks that are not populated */ | 
 | 		if (! checkbank[bank_no]) | 
 | 			continue; | 
 |  | 
 | 		DP(printf("checking bank %d\n", bank_no)); | 
 |  | 
 | 		memory_map_bank(bank_no, 0, GB/4); | 
 | 		checkbank[bank_no] = dram_size(NULL, GB/4); | 
 | 		memory_map_bank(bank_no, 0, 0); | 
 |  | 
 | 		DP(printf("bank %d %08lx\n", bank_no, checkbank[bank_no])); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * pass 2: contiguously map each bank into physical address | 
 | 	 * 	   space. | 
 | 	 */ | 
 | 	dimm_info[0].banks=dimm_info[1].banks=0; | 
 | 	for (bank_no = 0; bank_no < CFG_DRAM_BANKS; bank_no++) { | 
 | 		if(!checkbank[bank_no]) continue; | 
 |  | 
 | 		dimm_info[bank_no/2].banks++; | 
 | 		dimm_info[bank_no/2].size+=checkbank[bank_no]; | 
 |  | 
 | 		memory_map_bank(bank_no, total, checkbank[bank_no]); | 
 | #ifdef MAP_PCI | 
 | 		memory_map_bank_pci(bank_no, total, checkbank[bank_no]); | 
 | #endif | 
 | 		total += checkbank[bank_no]; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_ECC | 
 | #ifdef CONFIG_ZUMA_V2 | 
 | 	/* | 
 | 	 * We always enable ECC when bank 2 and 3 are unpopulated | 
 | 	 * If we 2 or 3 are populated, we CAN'T support ECC. | 
 | 	 * (Zuma boards only support ECC in banks 0 and 1; assume that | 
 | 	 * in that configuration, ECC chips are mounted, even for stacked | 
 | 	 * chips) | 
 | 	 */ | 
 | 	if (checkbank[2]==0 && checkbank[3]==0) { | 
 | 		dimm_info[0].ecc=2; | 
 | 		GT_REG_WRITE(SDRAM_TIMING, GTREGREAD(SDRAM_TIMING) | (1 << 13)); | 
 | 		/* TODO: do we have to run MRS cycles again? */ | 
 | 	} | 
 | #endif /* CONFIG_ZUMA_V2 */ | 
 |  | 
 | 	if (GTREGREAD(SDRAM_TIMING) & (1 << 13)) { | 
 | 		puts("[ECC] "); | 
 | 	} | 
 | #endif /* CONFIG_ECC */ | 
 |  | 
 | #ifdef DEBUG | 
 | 	dump_dimm_info(&dimm_info[0]); | 
 | 	dump_dimm_info(&dimm_info[1]); | 
 | #endif | 
 | 	/* TODO: return at MOST 256M? */ | 
 | 	/* return total > GB/4 ? GB/4 : total; */ | 
 | 	return total; | 
 | } |