|  | /* | 
|  | * (C) Copyright 2001 | 
|  | * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com. | 
|  | * | 
|  | * See file CREDITS for list of people who contributed to this | 
|  | * project. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation; either version 2 of | 
|  | * the License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | 
|  | * MA 02111-1307 USA | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * I2C Functions similar to the standard memory functions. | 
|  | * | 
|  | * There are several parameters in many of the commands that bear further | 
|  | * explanations: | 
|  | * | 
|  | * Two of the commands (imm and imw) take a byte/word/long modifier | 
|  | * (e.g. imm.w specifies the word-length modifier).  This was done to | 
|  | * allow manipulating word-length registers.  It was not done on any other | 
|  | * commands because it was not deemed useful. | 
|  | * | 
|  | * {i2c_chip} is the I2C chip address (the first byte sent on the bus). | 
|  | *   Each I2C chip on the bus has a unique address.  On the I2C data bus, | 
|  | *   the address is the upper seven bits and the LSB is the "read/write" | 
|  | *   bit.  Note that the {i2c_chip} address specified on the command | 
|  | *   line is not shifted up: e.g. a typical EEPROM memory chip may have | 
|  | *   an I2C address of 0x50, but the data put on the bus will be 0xA0 | 
|  | *   for write and 0xA1 for read.  This "non shifted" address notation | 
|  | *   matches at least half of the data sheets :-/. | 
|  | * | 
|  | * {addr} is the address (or offset) within the chip.  Small memory | 
|  | *   chips have 8 bit addresses.  Large memory chips have 16 bit | 
|  | *   addresses.  Other memory chips have 9, 10, or 11 bit addresses. | 
|  | *   Many non-memory chips have multiple registers and {addr} is used | 
|  | *   as the register index.  Some non-memory chips have only one register | 
|  | *   and therefore don't need any {addr} parameter. | 
|  | * | 
|  | *   The default {addr} parameter is one byte (.1) which works well for | 
|  | *   memories and registers with 8 bits of address space. | 
|  | * | 
|  | *   You can specify the length of the {addr} field with the optional .0, | 
|  | *   .1, or .2 modifier (similar to the .b, .w, .l modifier).  If you are | 
|  | *   manipulating a single register device which doesn't use an address | 
|  | *   field, use "0.0" for the address and the ".0" length field will | 
|  | *   suppress the address in the I2C data stream.  This also works for | 
|  | *   successive reads using the I2C auto-incrementing memory pointer. | 
|  | * | 
|  | *   If you are manipulating a large memory with 2-byte addresses, use | 
|  | *   the .2 address modifier, e.g. 210.2 addresses location 528 (decimal). | 
|  | * | 
|  | *   Then there are the unfortunate memory chips that spill the most | 
|  | *   significant 1, 2, or 3 bits of address into the chip address byte. | 
|  | *   This effectively makes one chip (logically) look like 2, 4, or | 
|  | *   8 chips.  This is handled (awkwardly) by #defining | 
|  | *   CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the | 
|  | *   {addr} field (since .1 is the default, it doesn't actually have to | 
|  | *   be specified).  Examples: given a memory chip at I2C chip address | 
|  | *   0x50, the following would happen... | 
|  | *     imd 50 0 10      display 16 bytes starting at 0x000 | 
|  | *                      On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd> | 
|  | *     imd 50 100 10    display 16 bytes starting at 0x100 | 
|  | *                      On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd> | 
|  | *     imd 50 210 10    display 16 bytes starting at 0x210 | 
|  | *                      On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd> | 
|  | *   This is awfully ugly.  It would be nice if someone would think up | 
|  | *   a better way of handling this. | 
|  | * | 
|  | * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de). | 
|  | */ | 
|  |  | 
|  | #include <common.h> | 
|  | #include <command.h> | 
|  | #include <i2c.h> | 
|  | #include <asm/byteorder.h> | 
|  |  | 
|  | #if (CONFIG_COMMANDS & CFG_CMD_I2C) | 
|  |  | 
|  |  | 
|  | /* Display values from last command. | 
|  | * Memory modify remembered values are different from display memory. | 
|  | */ | 
|  | static uchar	i2c_dp_last_chip; | 
|  | static uint	i2c_dp_last_addr; | 
|  | static uint	i2c_dp_last_alen; | 
|  | static uint	i2c_dp_last_length = 0x10; | 
|  |  | 
|  | static uchar	i2c_mm_last_chip; | 
|  | static uint	i2c_mm_last_addr; | 
|  | static uint	i2c_mm_last_alen; | 
|  |  | 
|  | #if defined(CFG_I2C_NOPROBES) | 
|  | static uchar i2c_no_probes[] = CFG_I2C_NOPROBES; | 
|  | #endif | 
|  |  | 
|  | static int | 
|  | mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]); | 
|  | extern int cmd_get_data_size(char* arg, int default_size); | 
|  |  | 
|  | /* | 
|  | * Syntax: | 
|  | *	imd {i2c_chip} {addr}{.0, .1, .2} {len} | 
|  | */ | 
|  | #define DISP_LINE_LEN	16 | 
|  |  | 
|  | int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) | 
|  | { | 
|  | u_char	chip; | 
|  | uint	addr, alen, length; | 
|  | int	j, nbytes, linebytes; | 
|  |  | 
|  | /* We use the last specified parameters, unless new ones are | 
|  | * entered. | 
|  | */ | 
|  | chip   = i2c_dp_last_chip; | 
|  | addr   = i2c_dp_last_addr; | 
|  | alen   = i2c_dp_last_alen; | 
|  | length = i2c_dp_last_length; | 
|  |  | 
|  | if (argc < 3) { | 
|  | printf ("Usage:\n%s\n", cmdtp->usage); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if ((flag & CMD_FLAG_REPEAT) == 0) { | 
|  | /* | 
|  | * New command specified. | 
|  | */ | 
|  | alen = 1; | 
|  |  | 
|  | /* | 
|  | * I2C chip address | 
|  | */ | 
|  | chip = simple_strtoul(argv[1], NULL, 16); | 
|  |  | 
|  | /* | 
|  | * I2C data address within the chip.  This can be 1 or | 
|  | * 2 bytes long.  Some day it might be 3 bytes long :-). | 
|  | */ | 
|  | addr = simple_strtoul(argv[2], NULL, 16); | 
|  | alen = 1; | 
|  | for(j = 0; j < 8; j++) { | 
|  | if (argv[2][j] == '.') { | 
|  | alen = argv[2][j+1] - '0'; | 
|  | if (alen > 4) { | 
|  | printf ("Usage:\n%s\n", cmdtp->usage); | 
|  | return 1; | 
|  | } | 
|  | break; | 
|  | } else if (argv[2][j] == '\0') { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If another parameter, it is the length to display. | 
|  | * Length is the number of objects, not number of bytes. | 
|  | */ | 
|  | if (argc > 3) | 
|  | length = simple_strtoul(argv[3], NULL, 16); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print the lines. | 
|  | * | 
|  | * We buffer all read data, so we can make sure data is read only | 
|  | * once. | 
|  | */ | 
|  | nbytes = length; | 
|  | do { | 
|  | unsigned char	linebuf[DISP_LINE_LEN]; | 
|  | unsigned char	*cp; | 
|  |  | 
|  | linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes; | 
|  |  | 
|  | if(i2c_read(chip, addr, alen, linebuf, linebytes) != 0) { | 
|  | puts ("Error reading the chip.\n"); | 
|  | } else { | 
|  | printf("%04x:", addr); | 
|  | cp = linebuf; | 
|  | for (j=0; j<linebytes; j++) { | 
|  | printf(" %02x", *cp++); | 
|  | addr++; | 
|  | } | 
|  | puts ("    "); | 
|  | cp = linebuf; | 
|  | for (j=0; j<linebytes; j++) { | 
|  | if ((*cp < 0x20) || (*cp > 0x7e)) | 
|  | puts ("."); | 
|  | else | 
|  | printf("%c", *cp); | 
|  | cp++; | 
|  | } | 
|  | putc ('\n'); | 
|  | } | 
|  | nbytes -= linebytes; | 
|  | } while (nbytes > 0); | 
|  |  | 
|  | i2c_dp_last_chip   = chip; | 
|  | i2c_dp_last_addr   = addr; | 
|  | i2c_dp_last_alen   = alen; | 
|  | i2c_dp_last_length = length; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) | 
|  | { | 
|  | return mod_i2c_mem (cmdtp, 1, flag, argc, argv); | 
|  | } | 
|  |  | 
|  |  | 
|  | int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) | 
|  | { | 
|  | return mod_i2c_mem (cmdtp, 0, flag, argc, argv); | 
|  | } | 
|  |  | 
|  | /* Write (fill) memory | 
|  | * | 
|  | * Syntax: | 
|  | *	imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}] | 
|  | */ | 
|  | int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) | 
|  | { | 
|  | uchar	chip; | 
|  | ulong	addr; | 
|  | uint	alen; | 
|  | uchar	byte; | 
|  | int	count; | 
|  | int	j; | 
|  |  | 
|  | if ((argc < 4) || (argc > 5)) { | 
|  | printf ("Usage:\n%s\n", cmdtp->usage); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Chip is always specified. | 
|  | */ | 
|  | chip = simple_strtoul(argv[1], NULL, 16); | 
|  |  | 
|  | /* | 
|  | * Address is always specified. | 
|  | */ | 
|  | addr = simple_strtoul(argv[2], NULL, 16); | 
|  | alen = 1; | 
|  | for(j = 0; j < 8; j++) { | 
|  | if (argv[2][j] == '.') { | 
|  | alen = argv[2][j+1] - '0'; | 
|  | if(alen > 4) { | 
|  | printf ("Usage:\n%s\n", cmdtp->usage); | 
|  | return 1; | 
|  | } | 
|  | break; | 
|  | } else if (argv[2][j] == '\0') { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Value to write is always specified. | 
|  | */ | 
|  | byte = simple_strtoul(argv[3], NULL, 16); | 
|  |  | 
|  | /* | 
|  | * Optional count | 
|  | */ | 
|  | if(argc == 5) { | 
|  | count = simple_strtoul(argv[4], NULL, 16); | 
|  | } else { | 
|  | count = 1; | 
|  | } | 
|  |  | 
|  | while (count-- > 0) { | 
|  | if(i2c_write(chip, addr++, alen, &byte, 1) != 0) { | 
|  | puts ("Error writing the chip.\n"); | 
|  | } | 
|  | /* | 
|  | * Wait for the write to complete.  The write can take | 
|  | * up to 10mSec (we allow a little more time). | 
|  | * | 
|  | * On some chips, while the write is in progress, the | 
|  | * chip doesn't respond.  This apparently isn't a | 
|  | * universal feature so we don't take advantage of it. | 
|  | */ | 
|  | /* | 
|  | * No write delay with FRAM devices. | 
|  | */ | 
|  | #if !defined(CFG_I2C_FRAM) | 
|  | udelay(11000); | 
|  | #endif | 
|  |  | 
|  | #if 0 | 
|  | for(timeout = 0; timeout < 10; timeout++) { | 
|  | udelay(2000); | 
|  | if(i2c_probe(chip) == 0) | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Calculate a CRC on memory | 
|  | * | 
|  | * Syntax: | 
|  | *	icrc32 {i2c_chip} {addr}{.0, .1, .2} {count} | 
|  | */ | 
|  | int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) | 
|  | { | 
|  | uchar	chip; | 
|  | ulong	addr; | 
|  | uint	alen; | 
|  | int	count; | 
|  | uchar	byte; | 
|  | ulong	crc; | 
|  | ulong	err; | 
|  | int	j; | 
|  |  | 
|  | if (argc < 4) { | 
|  | printf ("Usage:\n%s\n", cmdtp->usage); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Chip is always specified. | 
|  | */ | 
|  | chip = simple_strtoul(argv[1], NULL, 16); | 
|  |  | 
|  | /* | 
|  | * Address is always specified. | 
|  | */ | 
|  | addr = simple_strtoul(argv[2], NULL, 16); | 
|  | alen = 1; | 
|  | for(j = 0; j < 8; j++) { | 
|  | if (argv[2][j] == '.') { | 
|  | alen = argv[2][j+1] - '0'; | 
|  | if(alen > 4) { | 
|  | printf ("Usage:\n%s\n", cmdtp->usage); | 
|  | return 1; | 
|  | } | 
|  | break; | 
|  | } else if (argv[2][j] == '\0') { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Count is always specified | 
|  | */ | 
|  | count = simple_strtoul(argv[3], NULL, 16); | 
|  |  | 
|  | printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1); | 
|  | /* | 
|  | * CRC a byte at a time.  This is going to be slooow, but hey, the | 
|  | * memories are small and slow too so hopefully nobody notices. | 
|  | */ | 
|  | crc = 0; | 
|  | err = 0; | 
|  | while(count-- > 0) { | 
|  | if(i2c_read(chip, addr, alen, &byte, 1) != 0) { | 
|  | err++; | 
|  | } | 
|  | crc = crc32 (crc, &byte, 1); | 
|  | addr++; | 
|  | } | 
|  | if(err > 0) | 
|  | { | 
|  | puts ("Error reading the chip,\n"); | 
|  | } else { | 
|  | printf ("%08lx\n", crc); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Modify memory. | 
|  | * | 
|  | * Syntax: | 
|  | *	imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2} | 
|  | *	inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2} | 
|  | */ | 
|  |  | 
|  | static int | 
|  | mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]) | 
|  | { | 
|  | uchar	chip; | 
|  | ulong	addr; | 
|  | uint	alen; | 
|  | ulong	data; | 
|  | int	size = 1; | 
|  | int	nbytes; | 
|  | int	j; | 
|  | extern char console_buffer[]; | 
|  |  | 
|  | if (argc != 3) { | 
|  | printf ("Usage:\n%s\n", cmdtp->usage); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BOOT_RETRY_TIME | 
|  | reset_cmd_timeout();	/* got a good command to get here */ | 
|  | #endif | 
|  | /* | 
|  | * We use the last specified parameters, unless new ones are | 
|  | * entered. | 
|  | */ | 
|  | chip = i2c_mm_last_chip; | 
|  | addr = i2c_mm_last_addr; | 
|  | alen = i2c_mm_last_alen; | 
|  |  | 
|  | if ((flag & CMD_FLAG_REPEAT) == 0) { | 
|  | /* | 
|  | * New command specified.  Check for a size specification. | 
|  | * Defaults to byte if no or incorrect specification. | 
|  | */ | 
|  | size = cmd_get_data_size(argv[0], 1); | 
|  |  | 
|  | /* | 
|  | * Chip is always specified. | 
|  | */ | 
|  | chip = simple_strtoul(argv[1], NULL, 16); | 
|  |  | 
|  | /* | 
|  | * Address is always specified. | 
|  | */ | 
|  | addr = simple_strtoul(argv[2], NULL, 16); | 
|  | alen = 1; | 
|  | for(j = 0; j < 8; j++) { | 
|  | if (argv[2][j] == '.') { | 
|  | alen = argv[2][j+1] - '0'; | 
|  | if(alen > 4) { | 
|  | printf ("Usage:\n%s\n", cmdtp->usage); | 
|  | return 1; | 
|  | } | 
|  | break; | 
|  | } else if (argv[2][j] == '\0') { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print the address, followed by value.  Then accept input for | 
|  | * the next value.  A non-converted value exits. | 
|  | */ | 
|  | do { | 
|  | printf("%08lx:", addr); | 
|  | if(i2c_read(chip, addr, alen, (uchar *)&data, size) != 0) { | 
|  | puts ("\nError reading the chip,\n"); | 
|  | } else { | 
|  | data = cpu_to_be32(data); | 
|  | if(size == 1) { | 
|  | printf(" %02lx", (data >> 24) & 0x000000FF); | 
|  | } else if(size == 2) { | 
|  | printf(" %04lx", (data >> 16) & 0x0000FFFF); | 
|  | } else { | 
|  | printf(" %08lx", data); | 
|  | } | 
|  | } | 
|  |  | 
|  | nbytes = readline (" ? "); | 
|  | if (nbytes == 0) { | 
|  | /* | 
|  | * <CR> pressed as only input, don't modify current | 
|  | * location and move to next. | 
|  | */ | 
|  | if (incrflag) | 
|  | addr += size; | 
|  | nbytes = size; | 
|  | #ifdef CONFIG_BOOT_RETRY_TIME | 
|  | reset_cmd_timeout(); /* good enough to not time out */ | 
|  | #endif | 
|  | } | 
|  | #ifdef CONFIG_BOOT_RETRY_TIME | 
|  | else if (nbytes == -2) { | 
|  | break;	/* timed out, exit the command	*/ | 
|  | } | 
|  | #endif | 
|  | else { | 
|  | char *endp; | 
|  |  | 
|  | data = simple_strtoul(console_buffer, &endp, 16); | 
|  | if(size == 1) { | 
|  | data = data << 24; | 
|  | } else if(size == 2) { | 
|  | data = data << 16; | 
|  | } | 
|  | data = be32_to_cpu(data); | 
|  | nbytes = endp - console_buffer; | 
|  | if (nbytes) { | 
|  | #ifdef CONFIG_BOOT_RETRY_TIME | 
|  | /* | 
|  | * good enough to not time out | 
|  | */ | 
|  | reset_cmd_timeout(); | 
|  | #endif | 
|  | if(i2c_write(chip, addr, alen, (uchar *)&data, size) != 0) { | 
|  | puts ("Error writing the chip.\n"); | 
|  | } | 
|  | #ifdef CFG_EEPROM_PAGE_WRITE_DELAY_MS | 
|  | udelay(CFG_EEPROM_PAGE_WRITE_DELAY_MS * 1000); | 
|  | #endif | 
|  | if (incrflag) | 
|  | addr += size; | 
|  | } | 
|  | } | 
|  | } while (nbytes); | 
|  |  | 
|  | chip = i2c_mm_last_chip; | 
|  | addr = i2c_mm_last_addr; | 
|  | alen = i2c_mm_last_alen; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Syntax: | 
|  | *	iprobe {addr}{.0, .1, .2} | 
|  | */ | 
|  | int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) | 
|  | { | 
|  | int j; | 
|  | #if defined(CFG_I2C_NOPROBES) | 
|  | int k, skip; | 
|  | #endif | 
|  |  | 
|  | puts ("Valid chip addresses:"); | 
|  | for(j = 0; j < 128; j++) { | 
|  | #if defined(CFG_I2C_NOPROBES) | 
|  | skip = 0; | 
|  | for (k = 0; k < sizeof(i2c_no_probes); k++){ | 
|  | if (j == i2c_no_probes[k]){ | 
|  | skip = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (skip) | 
|  | continue; | 
|  | #endif | 
|  | if(i2c_probe(j) == 0) { | 
|  | printf(" %02X", j); | 
|  | } | 
|  | } | 
|  | putc ('\n'); | 
|  |  | 
|  | #if defined(CFG_I2C_NOPROBES) | 
|  | puts ("Excluded chip addresses:"); | 
|  | for( k = 0; k < sizeof(i2c_no_probes); k++ ) | 
|  | printf(" %02X", i2c_no_probes[k] ); | 
|  | putc ('\n'); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Syntax: | 
|  | *	iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}] | 
|  | *	{length} - Number of bytes to read | 
|  | *	{delay}  - A DECIMAL number and defaults to 1000 uSec | 
|  | */ | 
|  | int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) | 
|  | { | 
|  | u_char	chip; | 
|  | ulong	alen; | 
|  | uint	addr; | 
|  | uint	length; | 
|  | u_char	bytes[16]; | 
|  | int	delay; | 
|  | int	j; | 
|  |  | 
|  | if (argc < 3) { | 
|  | printf ("Usage:\n%s\n", cmdtp->usage); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Chip is always specified. | 
|  | */ | 
|  | chip = simple_strtoul(argv[1], NULL, 16); | 
|  |  | 
|  | /* | 
|  | * Address is always specified. | 
|  | */ | 
|  | addr = simple_strtoul(argv[2], NULL, 16); | 
|  | alen = 1; | 
|  | for(j = 0; j < 8; j++) { | 
|  | if (argv[2][j] == '.') { | 
|  | alen = argv[2][j+1] - '0'; | 
|  | if (alen > 4) { | 
|  | printf ("Usage:\n%s\n", cmdtp->usage); | 
|  | return 1; | 
|  | } | 
|  | break; | 
|  | } else if (argv[2][j] == '\0') { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Length is the number of objects, not number of bytes. | 
|  | */ | 
|  | length = 1; | 
|  | length = simple_strtoul(argv[3], NULL, 16); | 
|  | if(length > sizeof(bytes)) { | 
|  | length = sizeof(bytes); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The delay time (uSec) is optional. | 
|  | */ | 
|  | delay = 1000; | 
|  | if (argc > 3) { | 
|  | delay = simple_strtoul(argv[4], NULL, 10); | 
|  | } | 
|  | /* | 
|  | * Run the loop... | 
|  | */ | 
|  | while(1) { | 
|  | if(i2c_read(chip, addr, alen, bytes, length) != 0) { | 
|  | puts ("Error reading the chip.\n"); | 
|  | } | 
|  | udelay(delay); | 
|  | } | 
|  |  | 
|  | /* NOTREACHED */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The SDRAM command is separately configured because many | 
|  | * (most?) embedded boards don't use SDRAM DIMMs. | 
|  | */ | 
|  | #if (CONFIG_COMMANDS & CFG_CMD_SDRAM) | 
|  |  | 
|  | /* | 
|  | * Syntax: | 
|  | *	sdram {i2c_chip} | 
|  | */ | 
|  | int do_sdram  ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) | 
|  | { | 
|  | u_char	chip; | 
|  | u_char	data[128]; | 
|  | u_char	cksum; | 
|  | int	j; | 
|  |  | 
|  | if (argc < 2) { | 
|  | printf ("Usage:\n%s\n", cmdtp->usage); | 
|  | return 1; | 
|  | } | 
|  | /* | 
|  | * Chip is always specified. | 
|  | */ | 
|  | chip = simple_strtoul(argv[1], NULL, 16); | 
|  |  | 
|  | if(i2c_read(chip, 0, 1, data, sizeof(data)) != 0) { | 
|  | puts ("No SDRAM Serial Presence Detect found.\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | cksum = 0; | 
|  | for (j = 0; j < 63; j++) { | 
|  | cksum += data[j]; | 
|  | } | 
|  | if(cksum != data[63]) { | 
|  | printf ("WARNING: Configuration data checksum failure:\n" | 
|  | "  is 0x%02x, calculated 0x%02x\n", | 
|  | data[63], cksum); | 
|  | } | 
|  | printf("SPD data revision            %d.%d\n", | 
|  | (data[62] >> 4) & 0x0F, data[62] & 0x0F); | 
|  | printf("Bytes used                   0x%02X\n", data[0]); | 
|  | printf("Serial memory size           0x%02X\n", 1 << data[1]); | 
|  | puts ("Memory type                  "); | 
|  | switch(data[2]) { | 
|  | case 2:  puts ("EDO\n");	break; | 
|  | case 4:  puts ("SDRAM\n");	break; | 
|  | default: puts ("unknown\n");	break; | 
|  | } | 
|  | puts ("Row address bits             "); | 
|  | if((data[3] & 0x00F0) == 0) { | 
|  | printf("%d\n", data[3] & 0x0F); | 
|  | } else { | 
|  | printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F); | 
|  | } | 
|  | puts ("Column address bits          "); | 
|  | if((data[4] & 0x00F0) == 0) { | 
|  | printf("%d\n", data[4] & 0x0F); | 
|  | } else { | 
|  | printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F); | 
|  | } | 
|  | printf("Module rows                  %d\n", data[5]); | 
|  | printf("Module data width            %d bits\n", (data[7] << 8) | data[6]); | 
|  | puts ("Interface signal levels      "); | 
|  | switch(data[8]) { | 
|  | case 0:  puts ("5.0v/TTL\n");	break; | 
|  | case 1:  puts ("LVTTL\n");	break; | 
|  | case 2:  puts ("HSTL 1.5\n");	break; | 
|  | case 3:  puts ("SSTL 3.3\n");	break; | 
|  | case 4:  puts ("SSTL 2.5\n");	break; | 
|  | default: puts ("unknown\n");	break; | 
|  | } | 
|  | printf("SDRAM cycle time             %d.%d nS\n", | 
|  | (data[9] >> 4) & 0x0F, data[9] & 0x0F); | 
|  | printf("SDRAM access time            %d.%d nS\n", | 
|  | (data[10] >> 4) & 0x0F, data[10] & 0x0F); | 
|  | puts ("EDC configuration            "); | 
|  | switch(data[11]) { | 
|  | case 0:  puts ("None\n");	break; | 
|  | case 1:  puts ("Parity\n");	break; | 
|  | case 2:  puts ("ECC\n");	break; | 
|  | default: puts ("unknown\n");	break; | 
|  | } | 
|  | if((data[12] & 0x80) == 0) { | 
|  | puts ("No self refresh, rate        "); | 
|  | } else { | 
|  | puts ("Self refresh, rate           "); | 
|  | } | 
|  | switch(data[12] & 0x7F) { | 
|  | case 0:  puts ("15.625uS\n");	break; | 
|  | case 1:  puts ("3.9uS\n");	break; | 
|  | case 2:  puts ("7.8uS\n");	break; | 
|  | case 3:  puts ("31.3uS\n");	break; | 
|  | case 4:  puts ("62.5uS\n");	break; | 
|  | case 5:  puts ("125uS\n");	break; | 
|  | default: puts ("unknown\n");	break; | 
|  | } | 
|  | printf("SDRAM width (primary)        %d\n", data[13] & 0x7F); | 
|  | if((data[13] & 0x80) != 0) { | 
|  | printf("  (second bank)              %d\n", | 
|  | 2 * (data[13] & 0x7F)); | 
|  | } | 
|  | if(data[14] != 0) { | 
|  | printf("EDC width                    %d\n", | 
|  | data[14] & 0x7F); | 
|  | if((data[14] & 0x80) != 0) { | 
|  | printf("  (second bank)              %d\n", | 
|  | 2 * (data[14] & 0x7F)); | 
|  | } | 
|  | } | 
|  | printf("Min clock delay, back-to-back random column addresses %d\n", | 
|  | data[15]); | 
|  | puts ("Burst length(s)             "); | 
|  | if (data[16] & 0x80) puts (" Page"); | 
|  | if (data[16] & 0x08) puts (" 8"); | 
|  | if (data[16] & 0x04) puts (" 4"); | 
|  | if (data[16] & 0x02) puts (" 2"); | 
|  | if (data[16] & 0x01) puts (" 1"); | 
|  | putc ('\n'); | 
|  | printf("Number of banks              %d\n", data[17]); | 
|  | puts ("CAS latency(s)              "); | 
|  | if (data[18] & 0x80) puts (" TBD"); | 
|  | if (data[18] & 0x40) puts (" 7"); | 
|  | if (data[18] & 0x20) puts (" 6"); | 
|  | if (data[18] & 0x10) puts (" 5"); | 
|  | if (data[18] & 0x08) puts (" 4"); | 
|  | if (data[18] & 0x04) puts (" 3"); | 
|  | if (data[18] & 0x02) puts (" 2"); | 
|  | if (data[18] & 0x01) puts (" 1"); | 
|  | putc ('\n'); | 
|  | puts ("CS latency(s)               "); | 
|  | if (data[19] & 0x80) puts (" TBD"); | 
|  | if (data[19] & 0x40) puts (" 6"); | 
|  | if (data[19] & 0x20) puts (" 5"); | 
|  | if (data[19] & 0x10) puts (" 4"); | 
|  | if (data[19] & 0x08) puts (" 3"); | 
|  | if (data[19] & 0x04) puts (" 2"); | 
|  | if (data[19] & 0x02) puts (" 1"); | 
|  | if (data[19] & 0x01) puts (" 0"); | 
|  | putc ('\n'); | 
|  | puts ("WE latency(s)               "); | 
|  | if (data[20] & 0x80) puts (" TBD"); | 
|  | if (data[20] & 0x40) puts (" 6"); | 
|  | if (data[20] & 0x20) puts (" 5"); | 
|  | if (data[20] & 0x10) puts (" 4"); | 
|  | if (data[20] & 0x08) puts (" 3"); | 
|  | if (data[20] & 0x04) puts (" 2"); | 
|  | if (data[20] & 0x02) puts (" 1"); | 
|  | if (data[20] & 0x01) puts (" 0"); | 
|  | putc ('\n'); | 
|  | puts ("Module attributes:\n"); | 
|  | if (!data[21])       puts ("  (none)\n"); | 
|  | if (data[21] & 0x80) puts ("  TBD (bit 7)\n"); | 
|  | if (data[21] & 0x40) puts ("  Redundant row address\n"); | 
|  | if (data[21] & 0x20) puts ("  Differential clock input\n"); | 
|  | if (data[21] & 0x10) puts ("  Registerd DQMB inputs\n"); | 
|  | if (data[21] & 0x08) puts ("  Buffered DQMB inputs\n"); | 
|  | if (data[21] & 0x04) puts ("  On-card PLL\n"); | 
|  | if (data[21] & 0x02) puts ("  Registered address/control lines\n"); | 
|  | if (data[21] & 0x01) puts ("  Buffered address/control lines\n"); | 
|  | puts ("Device attributes:\n"); | 
|  | if (data[22] & 0x80) puts ("  TBD (bit 7)\n"); | 
|  | if (data[22] & 0x40) puts ("  TBD (bit 6)\n"); | 
|  | if (data[22] & 0x20) puts ("  Upper Vcc tolerance 5%\n"); | 
|  | else                 puts ("  Upper Vcc tolerance 10%\n"); | 
|  | if (data[22] & 0x10) puts ("  Lower Vcc tolerance 5%\n"); | 
|  | else                 puts ("  Lower Vcc tolerance 10%\n"); | 
|  | if (data[22] & 0x08) puts ("  Supports write1/read burst\n"); | 
|  | if (data[22] & 0x04) puts ("  Supports precharge all\n"); | 
|  | if (data[22] & 0x02) puts ("  Supports auto precharge\n"); | 
|  | if (data[22] & 0x01) puts ("  Supports early RAS# precharge\n"); | 
|  | printf("SDRAM cycle time (2nd highest CAS latency)        %d.%d nS\n", | 
|  | (data[23] >> 4) & 0x0F, data[23] & 0x0F); | 
|  | printf("SDRAM access from clock (2nd highest CAS latency) %d.%d nS\n", | 
|  | (data[24] >> 4) & 0x0F, data[24] & 0x0F); | 
|  | printf("SDRAM cycle time (3rd highest CAS latency)        %d.%d nS\n", | 
|  | (data[25] >> 4) & 0x0F, data[25] & 0x0F); | 
|  | printf("SDRAM access from clock (3rd highest CAS latency) %d.%d nS\n", | 
|  | (data[26] >> 4) & 0x0F, data[26] & 0x0F); | 
|  | printf("Minimum row precharge        %d nS\n", data[27]); | 
|  | printf("Row active to row active min %d nS\n", data[28]); | 
|  | printf("RAS to CAS delay min         %d nS\n", data[29]); | 
|  | printf("Minimum RAS pulse width      %d nS\n", data[30]); | 
|  | puts ("Density of each row         "); | 
|  | if (data[31] & 0x80) puts (" 512"); | 
|  | if (data[31] & 0x40) puts (" 256"); | 
|  | if (data[31] & 0x20) puts (" 128"); | 
|  | if (data[31] & 0x10) puts (" 64"); | 
|  | if (data[31] & 0x08) puts (" 32"); | 
|  | if (data[31] & 0x04) puts (" 16"); | 
|  | if (data[31] & 0x02) puts (" 8"); | 
|  | if (data[31] & 0x01) puts (" 4"); | 
|  | puts ("MByte\n"); | 
|  | printf("Command and Address setup    %c%d.%d nS\n", | 
|  | (data[32] & 0x80) ? '-' : '+', | 
|  | (data[32] >> 4) & 0x07, data[32] & 0x0F); | 
|  | printf("Command and Address hold     %c%d.%d nS\n", | 
|  | (data[33] & 0x80) ? '-' : '+', | 
|  | (data[33] >> 4) & 0x07, data[33] & 0x0F); | 
|  | printf("Data signal input setup      %c%d.%d nS\n", | 
|  | (data[34] & 0x80) ? '-' : '+', | 
|  | (data[34] >> 4) & 0x07, data[34] & 0x0F); | 
|  | printf("Data signal input hold       %c%d.%d nS\n", | 
|  | (data[35] & 0x80) ? '-' : '+', | 
|  | (data[35] >> 4) & 0x07, data[35] & 0x0F); | 
|  | puts ("Manufacturer's JEDEC ID      "); | 
|  | for(j = 64; j <= 71; j++) | 
|  | printf("%02X ", data[j]); | 
|  | putc ('\n'); | 
|  | printf("Manufacturing Location       %02X\n", data[72]); | 
|  | puts ("Manufacturer's Part Number   "); | 
|  | for(j = 73; j <= 90; j++) | 
|  | printf("%02X ", data[j]); | 
|  | putc ('\n'); | 
|  | printf("Revision Code                %02X %02X\n", data[91], data[92]); | 
|  | printf("Manufacturing Date           %02X %02X\n", data[93], data[94]); | 
|  | puts ("Assembly Serial Number       "); | 
|  | for(j = 95; j <= 98; j++) | 
|  | printf("%02X ", data[j]); | 
|  | putc ('\n'); | 
|  | printf("Speed rating                 PC%d\n", | 
|  | data[126] == 0x66 ? 66 : data[126]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif	/* CFG_CMD_SDRAM */ | 
|  |  | 
|  |  | 
|  | /***************************************************/ | 
|  |  | 
|  | U_BOOT_CMD( | 
|  | imd,	4,	1,	do_i2c_md,		\ | 
|  | "imd     - i2c memory display\n",				\ | 
|  | "chip address[.0, .1, .2] [# of objects]\n    - i2c memory display\n" \ | 
|  | ); | 
|  |  | 
|  | U_BOOT_CMD( | 
|  | imm,	3,	1,	do_i2c_mm, | 
|  | "imm     - i2c memory modify (auto-incrementing)\n", | 
|  | "chip address[.0, .1, .2]\n" | 
|  | "    - memory modify, auto increment address\n" | 
|  | ); | 
|  | U_BOOT_CMD( | 
|  | inm,	3,	1,	do_i2c_nm, | 
|  | "inm     - memory modify (constant address)\n", | 
|  | "chip address[.0, .1, .2]\n    - memory modify, read and keep address\n" | 
|  | ); | 
|  |  | 
|  | U_BOOT_CMD( | 
|  | imw,	5,	1,	do_i2c_mw, | 
|  | "imw     - memory write (fill)\n", | 
|  | "chip address[.0, .1, .2] value [count]\n    - memory write (fill)\n" | 
|  | ); | 
|  |  | 
|  | U_BOOT_CMD( | 
|  | icrc32,	5,	1,	do_i2c_crc, | 
|  | "icrc32  - checksum calculation\n", | 
|  | "chip address[.0, .1, .2] count\n    - compute CRC32 checksum\n" | 
|  | ); | 
|  |  | 
|  | U_BOOT_CMD( | 
|  | iprobe,	1,	1,	do_i2c_probe, | 
|  | "iprobe  - probe to discover valid I2C chip addresses\n", | 
|  | "\n    -discover valid I2C chip addresses\n" | 
|  | ); | 
|  |  | 
|  | /* | 
|  | * Require full name for "iloop" because it is an infinite loop! | 
|  | */ | 
|  | U_BOOT_CMD( | 
|  | iloop,	5,	1,	do_i2c_loop, | 
|  | "iloop   - infinite loop on address range\n", | 
|  | "chip address[.0, .1, .2] [# of objects]\n" | 
|  | "    - loop, reading a set of addresses\n" | 
|  | ); | 
|  |  | 
|  | #if (CONFIG_COMMANDS & CFG_CMD_SDRAM) | 
|  | U_BOOT_CMD( | 
|  | isdram,	2,	1,	do_sdram, | 
|  | "isdram  - print SDRAM configuration information\n", | 
|  | "chip\n    - print SDRAM configuration information\n" | 
|  | "      (valid chip values 50..57)\n" | 
|  | ); | 
|  | #endif | 
|  | #endif	/* CFG_CMD_I2C */ |