| /* |
| * Copyright (c) 2011 The Chromium OS Authors. |
| * (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com> |
| * (C) Copyright 2006 Detlev Zundel, dzu@denx.de |
| * (C) Copyright 2006 DENX Software Engineering |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #include <nand.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/funcmux.h> |
| #include <asm/arch-tegra/clk_rst.h> |
| #include <asm/errno.h> |
| #include <asm/gpio.h> |
| #include <fdtdec.h> |
| #include "tegra_nand.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #define NAND_CMD_TIMEOUT_MS 10 |
| |
| #define SKIPPED_SPARE_BYTES 4 |
| |
| /* ECC bytes to be generated for tag data */ |
| #define TAG_ECC_BYTES 4 |
| |
| /* 64 byte oob block info for large page (== 2KB) device |
| * |
| * OOB flash layout for Tegra with Reed-Solomon 4 symbol correct ECC: |
| * Skipped bytes(4) |
| * Main area Ecc(36) |
| * Tag data(20) |
| * Tag data Ecc(4) |
| * |
| * Yaffs2 will use 16 tag bytes. |
| */ |
| static struct nand_ecclayout eccoob = { |
| .eccbytes = 36, |
| .eccpos = { |
| 4, 5, 6, 7, 8, 9, 10, 11, 12, |
| 13, 14, 15, 16, 17, 18, 19, 20, 21, |
| 22, 23, 24, 25, 26, 27, 28, 29, 30, |
| 31, 32, 33, 34, 35, 36, 37, 38, 39, |
| }, |
| .oobavail = 20, |
| .oobfree = { |
| { |
| .offset = 40, |
| .length = 20, |
| }, |
| } |
| }; |
| |
| enum { |
| ECC_OK, |
| ECC_TAG_ERROR = 1 << 0, |
| ECC_DATA_ERROR = 1 << 1 |
| }; |
| |
| /* Timing parameters */ |
| enum { |
| FDT_NAND_MAX_TRP_TREA, |
| FDT_NAND_TWB, |
| FDT_NAND_MAX_TCR_TAR_TRR, |
| FDT_NAND_TWHR, |
| FDT_NAND_MAX_TCS_TCH_TALS_TALH, |
| FDT_NAND_TWH, |
| FDT_NAND_TWP, |
| FDT_NAND_TRH, |
| FDT_NAND_TADL, |
| |
| FDT_NAND_TIMING_COUNT |
| }; |
| |
| /* Information about an attached NAND chip */ |
| struct fdt_nand { |
| struct nand_ctlr *reg; |
| int enabled; /* 1 to enable, 0 to disable */ |
| struct fdt_gpio_state wp_gpio; /* write-protect GPIO */ |
| s32 width; /* bit width, normally 8 */ |
| u32 timing[FDT_NAND_TIMING_COUNT]; |
| }; |
| |
| struct nand_drv { |
| struct nand_ctlr *reg; |
| |
| /* |
| * When running in PIO mode to get READ ID bytes from register |
| * RESP_0, we need this variable as an index to know which byte in |
| * register RESP_0 should be read. |
| * Because common code in nand_base.c invokes read_byte function two |
| * times for NAND_CMD_READID. |
| * And our controller returns 4 bytes at once in register RESP_0. |
| */ |
| int pio_byte_index; |
| struct fdt_nand config; |
| }; |
| |
| static struct nand_drv nand_ctrl; |
| static struct mtd_info *our_mtd; |
| static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE]; |
| |
| #ifdef CONFIG_SYS_DCACHE_OFF |
| static inline void dma_prepare(void *start, unsigned long length, |
| int is_writing) |
| { |
| } |
| #else |
| /** |
| * Prepare for a DMA transaction |
| * |
| * For a write we flush out our data. For a read we invalidate, since we |
| * need to do this before we read from the buffer after the DMA has |
| * completed, so may as well do it now. |
| * |
| * @param start Start address for DMA buffer (should be cache-aligned) |
| * @param length Length of DMA buffer in bytes |
| * @param is_writing 0 if reading, non-zero if writing |
| */ |
| static void dma_prepare(void *start, unsigned long length, int is_writing) |
| { |
| unsigned long addr = (unsigned long)start; |
| |
| length = ALIGN(length, ARCH_DMA_MINALIGN); |
| if (is_writing) |
| flush_dcache_range(addr, addr + length); |
| else |
| invalidate_dcache_range(addr, addr + length); |
| } |
| #endif |
| |
| /** |
| * Wait for command completion |
| * |
| * @param reg nand_ctlr structure |
| * @return |
| * 1 - Command completed |
| * 0 - Timeout |
| */ |
| static int nand_waitfor_cmd_completion(struct nand_ctlr *reg) |
| { |
| u32 reg_val; |
| int running; |
| int i; |
| |
| for (i = 0; i < NAND_CMD_TIMEOUT_MS * 1000; i++) { |
| if ((readl(®->command) & CMD_GO) || |
| !(readl(®->status) & STATUS_RBSY0) || |
| !(readl(®->isr) & ISR_IS_CMD_DONE)) { |
| udelay(1); |
| continue; |
| } |
| reg_val = readl(®->dma_mst_ctrl); |
| /* |
| * If DMA_MST_CTRL_EN_A_ENABLE or DMA_MST_CTRL_EN_B_ENABLE |
| * is set, that means DMA engine is running. |
| * |
| * Then we have to wait until DMA_MST_CTRL_IS_DMA_DONE |
| * is cleared, indicating DMA transfer completion. |
| */ |
| running = reg_val & (DMA_MST_CTRL_EN_A_ENABLE | |
| DMA_MST_CTRL_EN_B_ENABLE); |
| if (!running || (reg_val & DMA_MST_CTRL_IS_DMA_DONE)) |
| return 1; |
| udelay(1); |
| } |
| return 0; |
| } |
| |
| /** |
| * Read one byte from the chip |
| * |
| * @param mtd MTD device structure |
| * @return data byte |
| * |
| * Read function for 8bit bus-width |
| */ |
| static uint8_t read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| u32 dword_read; |
| struct nand_drv *info; |
| |
| info = (struct nand_drv *)chip->priv; |
| |
| /* In PIO mode, only 4 bytes can be transferred with single CMD_GO. */ |
| if (info->pio_byte_index > 3) { |
| info->pio_byte_index = 0; |
| writel(CMD_GO | CMD_PIO |
| | CMD_RX | CMD_CE0, |
| &info->reg->command); |
| if (!nand_waitfor_cmd_completion(info->reg)) |
| printf("Command timeout\n"); |
| } |
| |
| dword_read = readl(&info->reg->resp); |
| dword_read = dword_read >> (8 * info->pio_byte_index); |
| info->pio_byte_index++; |
| return (uint8_t)dword_read; |
| } |
| |
| /** |
| * Read len bytes from the chip into a buffer |
| * |
| * @param mtd MTD device structure |
| * @param buf buffer to store data to |
| * @param len number of bytes to read |
| * |
| * Read function for 8bit bus-width |
| */ |
| static void read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| int i, s; |
| unsigned int reg; |
| struct nand_chip *chip = mtd->priv; |
| struct nand_drv *info = (struct nand_drv *)chip->priv; |
| |
| for (i = 0; i < len; i += 4) { |
| s = (len - i) > 4 ? 4 : len - i; |
| writel(CMD_PIO | CMD_RX | CMD_A_VALID | CMD_CE0 | |
| ((s - 1) << CMD_TRANS_SIZE_SHIFT) | CMD_GO, |
| &info->reg->command); |
| if (!nand_waitfor_cmd_completion(info->reg)) |
| puts("Command timeout during read_buf\n"); |
| reg = readl(&info->reg->resp); |
| memcpy(buf + i, ®, s); |
| } |
| } |
| |
| /** |
| * Check NAND status to see if it is ready or not |
| * |
| * @param mtd MTD device structure |
| * @return |
| * 1 - ready |
| * 0 - not ready |
| */ |
| static int nand_dev_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| int reg_val; |
| struct nand_drv *info; |
| |
| info = (struct nand_drv *)chip->priv; |
| |
| reg_val = readl(&info->reg->status); |
| if (reg_val & STATUS_RBSY0) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* Dummy implementation: we don't support multiple chips */ |
| static void nand_select_chip(struct mtd_info *mtd, int chipnr) |
| { |
| switch (chipnr) { |
| case -1: |
| case 0: |
| break; |
| |
| default: |
| BUG(); |
| } |
| } |
| |
| /** |
| * Clear all interrupt status bits |
| * |
| * @param reg nand_ctlr structure |
| */ |
| static void nand_clear_interrupt_status(struct nand_ctlr *reg) |
| { |
| u32 reg_val; |
| |
| /* Clear interrupt status */ |
| reg_val = readl(®->isr); |
| writel(reg_val, ®->isr); |
| } |
| |
| /** |
| * Send command to NAND device |
| * |
| * @param mtd MTD device structure |
| * @param command the command to be sent |
| * @param column the column address for this command, -1 if none |
| * @param page_addr the page address for this command, -1 if none |
| */ |
| static void nand_command(struct mtd_info *mtd, unsigned int command, |
| int column, int page_addr) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct nand_drv *info; |
| |
| info = (struct nand_drv *)chip->priv; |
| |
| /* |
| * Write out the command to the device. |
| * |
| * Only command NAND_CMD_RESET or NAND_CMD_READID will come |
| * here before mtd->writesize is initialized. |
| */ |
| |
| /* Emulate NAND_CMD_READOOB */ |
| if (command == NAND_CMD_READOOB) { |
| assert(mtd->writesize != 0); |
| column += mtd->writesize; |
| command = NAND_CMD_READ0; |
| } |
| |
| /* Adjust columns for 16 bit bus-width */ |
| if (column != -1 && (chip->options & NAND_BUSWIDTH_16)) |
| column >>= 1; |
| |
| nand_clear_interrupt_status(info->reg); |
| |
| /* Stop DMA engine, clear DMA completion status */ |
| writel(DMA_MST_CTRL_EN_A_DISABLE |
| | DMA_MST_CTRL_EN_B_DISABLE |
| | DMA_MST_CTRL_IS_DMA_DONE, |
| &info->reg->dma_mst_ctrl); |
| |
| /* |
| * Program and erase have their own busy handlers |
| * status and sequential in needs no delay |
| */ |
| switch (command) { |
| case NAND_CMD_READID: |
| writel(NAND_CMD_READID, &info->reg->cmd_reg1); |
| writel(column & 0xFF, &info->reg->addr_reg1); |
| writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_PIO |
| | CMD_RX | |
| ((4 - 1) << CMD_TRANS_SIZE_SHIFT) |
| | CMD_CE0, |
| &info->reg->command); |
| info->pio_byte_index = 0; |
| break; |
| case NAND_CMD_PARAM: |
| writel(NAND_CMD_PARAM, &info->reg->cmd_reg1); |
| writel(column & 0xFF, &info->reg->addr_reg1); |
| writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0, |
| &info->reg->command); |
| break; |
| case NAND_CMD_READ0: |
| writel(NAND_CMD_READ0, &info->reg->cmd_reg1); |
| writel(NAND_CMD_READSTART, &info->reg->cmd_reg2); |
| writel((page_addr << 16) | (column & 0xFFFF), |
| &info->reg->addr_reg1); |
| writel(page_addr >> 16, &info->reg->addr_reg2); |
| return; |
| case NAND_CMD_SEQIN: |
| writel(NAND_CMD_SEQIN, &info->reg->cmd_reg1); |
| writel(NAND_CMD_PAGEPROG, &info->reg->cmd_reg2); |
| writel((page_addr << 16) | (column & 0xFFFF), |
| &info->reg->addr_reg1); |
| writel(page_addr >> 16, |
| &info->reg->addr_reg2); |
| return; |
| case NAND_CMD_PAGEPROG: |
| return; |
| case NAND_CMD_ERASE1: |
| writel(NAND_CMD_ERASE1, &info->reg->cmd_reg1); |
| writel(NAND_CMD_ERASE2, &info->reg->cmd_reg2); |
| writel(page_addr, &info->reg->addr_reg1); |
| writel(CMD_GO | CMD_CLE | CMD_ALE | |
| CMD_SEC_CMD | CMD_CE0 | CMD_ALE_BYTES3, |
| &info->reg->command); |
| break; |
| case NAND_CMD_ERASE2: |
| return; |
| case NAND_CMD_STATUS: |
| writel(NAND_CMD_STATUS, &info->reg->cmd_reg1); |
| writel(CMD_GO | CMD_CLE | CMD_PIO | CMD_RX |
| | ((1 - 0) << CMD_TRANS_SIZE_SHIFT) |
| | CMD_CE0, |
| &info->reg->command); |
| info->pio_byte_index = 0; |
| break; |
| case NAND_CMD_RESET: |
| writel(NAND_CMD_RESET, &info->reg->cmd_reg1); |
| writel(CMD_GO | CMD_CLE | CMD_CE0, |
| &info->reg->command); |
| break; |
| case NAND_CMD_RNDOUT: |
| default: |
| printf("%s: Unsupported command %d\n", __func__, command); |
| return; |
| } |
| if (!nand_waitfor_cmd_completion(info->reg)) |
| printf("Command 0x%02X timeout\n", command); |
| } |
| |
| /** |
| * Check whether the pointed buffer are all 0xff (blank). |
| * |
| * @param buf data buffer for blank check |
| * @param len length of the buffer in byte |
| * @return |
| * 1 - blank |
| * 0 - non-blank |
| */ |
| static int blank_check(u8 *buf, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| if (buf[i] != 0xFF) |
| return 0; |
| return 1; |
| } |
| |
| /** |
| * After a DMA transfer for read, we call this function to see whether there |
| * is any uncorrectable error on the pointed data buffer or oob buffer. |
| * |
| * @param reg nand_ctlr structure |
| * @param databuf data buffer |
| * @param a_len data buffer length |
| * @param oobbuf oob buffer |
| * @param b_len oob buffer length |
| * @return |
| * ECC_OK - no ECC error or correctable ECC error |
| * ECC_TAG_ERROR - uncorrectable tag ECC error |
| * ECC_DATA_ERROR - uncorrectable data ECC error |
| * ECC_DATA_ERROR + ECC_TAG_ERROR - uncorrectable data+tag ECC error |
| */ |
| static int check_ecc_error(struct nand_ctlr *reg, u8 *databuf, |
| int a_len, u8 *oobbuf, int b_len) |
| { |
| int return_val = ECC_OK; |
| u32 reg_val; |
| |
| if (!(readl(®->isr) & ISR_IS_ECC_ERR)) |
| return ECC_OK; |
| |
| /* |
| * Area A is used for the data block (databuf). Area B is used for |
| * the spare block (oobbuf) |
| */ |
| reg_val = readl(®->dec_status); |
| if ((reg_val & DEC_STATUS_A_ECC_FAIL) && databuf) { |
| reg_val = readl(®->bch_dec_status_buf); |
| /* |
| * If uncorrectable error occurs on data area, then see whether |
| * they are all FF. If all are FF, it's a blank page. |
| * Not error. |
| */ |
| if ((reg_val & BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK) && |
| !blank_check(databuf, a_len)) |
| return_val |= ECC_DATA_ERROR; |
| } |
| |
| if ((reg_val & DEC_STATUS_B_ECC_FAIL) && oobbuf) { |
| reg_val = readl(®->bch_dec_status_buf); |
| /* |
| * If uncorrectable error occurs on tag area, then see whether |
| * they are all FF. If all are FF, it's a blank page. |
| * Not error. |
| */ |
| if ((reg_val & BCH_DEC_STATUS_FAIL_TAG_MASK) && |
| !blank_check(oobbuf, b_len)) |
| return_val |= ECC_TAG_ERROR; |
| } |
| |
| return return_val; |
| } |
| |
| /** |
| * Set GO bit to send command to device |
| * |
| * @param reg nand_ctlr structure |
| */ |
| static void start_command(struct nand_ctlr *reg) |
| { |
| u32 reg_val; |
| |
| reg_val = readl(®->command); |
| reg_val |= CMD_GO; |
| writel(reg_val, ®->command); |
| } |
| |
| /** |
| * Clear command GO bit, DMA GO bit, and DMA completion status |
| * |
| * @param reg nand_ctlr structure |
| */ |
| static void stop_command(struct nand_ctlr *reg) |
| { |
| /* Stop command */ |
| writel(0, ®->command); |
| |
| /* Stop DMA engine and clear DMA completion status */ |
| writel(DMA_MST_CTRL_GO_DISABLE |
| | DMA_MST_CTRL_IS_DMA_DONE, |
| ®->dma_mst_ctrl); |
| } |
| |
| /** |
| * Set up NAND bus width and page size |
| * |
| * @param info nand_info structure |
| * @param *reg_val address of reg_val |
| * @return 0 if ok, -1 on error |
| */ |
| static int set_bus_width_page_size(struct fdt_nand *config, |
| u32 *reg_val) |
| { |
| if (config->width == 8) |
| *reg_val = CFG_BUS_WIDTH_8BIT; |
| else if (config->width == 16) |
| *reg_val = CFG_BUS_WIDTH_16BIT; |
| else { |
| debug("%s: Unsupported bus width %d\n", __func__, |
| config->width); |
| return -1; |
| } |
| |
| if (our_mtd->writesize == 512) |
| *reg_val |= CFG_PAGE_SIZE_512; |
| else if (our_mtd->writesize == 2048) |
| *reg_val |= CFG_PAGE_SIZE_2048; |
| else if (our_mtd->writesize == 4096) |
| *reg_val |= CFG_PAGE_SIZE_4096; |
| else { |
| debug("%s: Unsupported page size %d\n", __func__, |
| our_mtd->writesize); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Page read/write function |
| * |
| * @param mtd mtd info structure |
| * @param chip nand chip info structure |
| * @param buf data buffer |
| * @param page page number |
| * @param with_ecc 1 to enable ECC, 0 to disable ECC |
| * @param is_writing 0 for read, 1 for write |
| * @return 0 when successfully completed |
| * -EIO when command timeout |
| */ |
| static int nand_rw_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int page, int with_ecc, int is_writing) |
| { |
| u32 reg_val; |
| int tag_size; |
| struct nand_oobfree *free = chip->ecc.layout->oobfree; |
| /* 4*128=512 (byte) is the value that our HW can support. */ |
| ALLOC_CACHE_ALIGN_BUFFER(u32, tag_buf, 128); |
| char *tag_ptr; |
| struct nand_drv *info; |
| struct fdt_nand *config; |
| |
| if ((uintptr_t)buf & 0x03) { |
| printf("buf %p has to be 4-byte aligned\n", buf); |
| return -EINVAL; |
| } |
| |
| info = (struct nand_drv *)chip->priv; |
| config = &info->config; |
| if (set_bus_width_page_size(config, ®_val)) |
| return -EINVAL; |
| |
| /* Need to be 4-byte aligned */ |
| tag_ptr = (char *)tag_buf; |
| |
| stop_command(info->reg); |
| |
| writel((1 << chip->page_shift) - 1, &info->reg->dma_cfg_a); |
| writel(virt_to_phys(buf), &info->reg->data_block_ptr); |
| |
| if (with_ecc) { |
| writel(virt_to_phys(tag_ptr), &info->reg->tag_ptr); |
| if (is_writing) |
| memcpy(tag_ptr, chip->oob_poi + free->offset, |
| chip->ecc.layout->oobavail + |
| TAG_ECC_BYTES); |
| } else { |
| writel(virt_to_phys(chip->oob_poi), &info->reg->tag_ptr); |
| } |
| |
| /* Set ECC selection, configure ECC settings */ |
| if (with_ecc) { |
| tag_size = chip->ecc.layout->oobavail + TAG_ECC_BYTES; |
| reg_val |= (CFG_SKIP_SPARE_SEL_4 |
| | CFG_SKIP_SPARE_ENABLE |
| | CFG_HW_ECC_CORRECTION_ENABLE |
| | CFG_ECC_EN_TAG_DISABLE |
| | CFG_HW_ECC_SEL_RS |
| | CFG_HW_ECC_ENABLE |
| | CFG_TVAL4 |
| | (tag_size - 1)); |
| |
| if (!is_writing) |
| tag_size += SKIPPED_SPARE_BYTES; |
| dma_prepare(tag_ptr, tag_size, is_writing); |
| } else { |
| tag_size = mtd->oobsize; |
| reg_val |= (CFG_SKIP_SPARE_DISABLE |
| | CFG_HW_ECC_CORRECTION_DISABLE |
| | CFG_ECC_EN_TAG_DISABLE |
| | CFG_HW_ECC_DISABLE |
| | (tag_size - 1)); |
| dma_prepare(chip->oob_poi, tag_size, is_writing); |
| } |
| writel(reg_val, &info->reg->config); |
| |
| dma_prepare(buf, 1 << chip->page_shift, is_writing); |
| |
| writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config); |
| |
| writel(tag_size - 1, &info->reg->dma_cfg_b); |
| |
| nand_clear_interrupt_status(info->reg); |
| |
| reg_val = CMD_CLE | CMD_ALE |
| | CMD_SEC_CMD |
| | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT) |
| | CMD_A_VALID |
| | CMD_B_VALID |
| | (CMD_TRANS_SIZE_PAGE << CMD_TRANS_SIZE_SHIFT) |
| | CMD_CE0; |
| if (!is_writing) |
| reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX); |
| else |
| reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX); |
| writel(reg_val, &info->reg->command); |
| |
| /* Setup DMA engine */ |
| reg_val = DMA_MST_CTRL_GO_ENABLE |
| | DMA_MST_CTRL_BURST_8WORDS |
| | DMA_MST_CTRL_EN_A_ENABLE |
| | DMA_MST_CTRL_EN_B_ENABLE; |
| |
| if (!is_writing) |
| reg_val |= DMA_MST_CTRL_DIR_READ; |
| else |
| reg_val |= DMA_MST_CTRL_DIR_WRITE; |
| |
| writel(reg_val, &info->reg->dma_mst_ctrl); |
| |
| start_command(info->reg); |
| |
| if (!nand_waitfor_cmd_completion(info->reg)) { |
| if (!is_writing) |
| printf("Read Page 0x%X timeout ", page); |
| else |
| printf("Write Page 0x%X timeout ", page); |
| if (with_ecc) |
| printf("with ECC"); |
| else |
| printf("without ECC"); |
| printf("\n"); |
| return -EIO; |
| } |
| |
| if (with_ecc && !is_writing) { |
| memcpy(chip->oob_poi, tag_ptr, |
| SKIPPED_SPARE_BYTES); |
| memcpy(chip->oob_poi + free->offset, |
| tag_ptr + SKIPPED_SPARE_BYTES, |
| chip->ecc.layout->oobavail); |
| reg_val = (u32)check_ecc_error(info->reg, (u8 *)buf, |
| 1 << chip->page_shift, |
| (u8 *)(tag_ptr + SKIPPED_SPARE_BYTES), |
| chip->ecc.layout->oobavail); |
| if (reg_val & ECC_TAG_ERROR) |
| printf("Read Page 0x%X tag ECC error\n", page); |
| if (reg_val & ECC_DATA_ERROR) |
| printf("Read Page 0x%X data ECC error\n", |
| page); |
| if (reg_val & (ECC_DATA_ERROR | ECC_TAG_ERROR)) |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| /** |
| * Hardware ecc based page read function |
| * |
| * @param mtd mtd info structure |
| * @param chip nand chip info structure |
| * @param buf buffer to store read data |
| * @param page page number to read |
| * @return 0 when successfully completed |
| * -EIO when command timeout |
| */ |
| static int nand_read_page_hwecc(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, int oob_required, int page) |
| { |
| return nand_rw_page(mtd, chip, buf, page, 1, 0); |
| } |
| |
| /** |
| * Hardware ecc based page write function |
| * |
| * @param mtd mtd info structure |
| * @param chip nand chip info structure |
| * @param buf data buffer |
| */ |
| static int nand_write_page_hwecc(struct mtd_info *mtd, |
| struct nand_chip *chip, const uint8_t *buf, int oob_required) |
| { |
| int page; |
| struct nand_drv *info; |
| |
| info = (struct nand_drv *)chip->priv; |
| |
| page = (readl(&info->reg->addr_reg1) >> 16) | |
| (readl(&info->reg->addr_reg2) << 16); |
| |
| nand_rw_page(mtd, chip, (uint8_t *)buf, page, 1, 1); |
| return 0; |
| } |
| |
| |
| /** |
| * Read raw page data without ecc |
| * |
| * @param mtd mtd info structure |
| * @param chip nand chip info structure |
| * @param buf buffer to store read data |
| * @param page page number to read |
| * @return 0 when successfully completed |
| * -EINVAL when chip->oob_poi is not double-word aligned |
| * -EIO when command timeout |
| */ |
| static int nand_read_page_raw(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, int oob_required, int page) |
| { |
| return nand_rw_page(mtd, chip, buf, page, 0, 0); |
| } |
| |
| /** |
| * Raw page write function |
| * |
| * @param mtd mtd info structure |
| * @param chip nand chip info structure |
| * @param buf data buffer |
| */ |
| static int nand_write_page_raw(struct mtd_info *mtd, |
| struct nand_chip *chip, const uint8_t *buf, int oob_required) |
| { |
| int page; |
| struct nand_drv *info; |
| |
| info = (struct nand_drv *)chip->priv; |
| page = (readl(&info->reg->addr_reg1) >> 16) | |
| (readl(&info->reg->addr_reg2) << 16); |
| |
| nand_rw_page(mtd, chip, (uint8_t *)buf, page, 0, 1); |
| return 0; |
| } |
| |
| /** |
| * OOB data read/write function |
| * |
| * @param mtd mtd info structure |
| * @param chip nand chip info structure |
| * @param page page number to read |
| * @param with_ecc 1 to enable ECC, 0 to disable ECC |
| * @param is_writing 0 for read, 1 for write |
| * @return 0 when successfully completed |
| * -EINVAL when chip->oob_poi is not double-word aligned |
| * -EIO when command timeout |
| */ |
| static int nand_rw_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page, int with_ecc, int is_writing) |
| { |
| u32 reg_val; |
| int tag_size; |
| struct nand_oobfree *free = chip->ecc.layout->oobfree; |
| struct nand_drv *info; |
| |
| if (((int)chip->oob_poi) & 0x03) |
| return -EINVAL; |
| info = (struct nand_drv *)chip->priv; |
| if (set_bus_width_page_size(&info->config, ®_val)) |
| return -EINVAL; |
| |
| stop_command(info->reg); |
| |
| writel(virt_to_phys(chip->oob_poi), &info->reg->tag_ptr); |
| |
| /* Set ECC selection */ |
| tag_size = mtd->oobsize; |
| if (with_ecc) |
| reg_val |= CFG_ECC_EN_TAG_ENABLE; |
| else |
| reg_val |= (CFG_ECC_EN_TAG_DISABLE); |
| |
| reg_val |= ((tag_size - 1) | |
| CFG_SKIP_SPARE_DISABLE | |
| CFG_HW_ECC_CORRECTION_DISABLE | |
| CFG_HW_ECC_DISABLE); |
| writel(reg_val, &info->reg->config); |
| |
| dma_prepare(chip->oob_poi, tag_size, is_writing); |
| |
| writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config); |
| |
| if (is_writing && with_ecc) |
| tag_size -= TAG_ECC_BYTES; |
| |
| writel(tag_size - 1, &info->reg->dma_cfg_b); |
| |
| nand_clear_interrupt_status(info->reg); |
| |
| reg_val = CMD_CLE | CMD_ALE |
| | CMD_SEC_CMD |
| | (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT) |
| | CMD_B_VALID |
| | CMD_CE0; |
| if (!is_writing) |
| reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX); |
| else |
| reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX); |
| writel(reg_val, &info->reg->command); |
| |
| /* Setup DMA engine */ |
| reg_val = DMA_MST_CTRL_GO_ENABLE |
| | DMA_MST_CTRL_BURST_8WORDS |
| | DMA_MST_CTRL_EN_B_ENABLE; |
| if (!is_writing) |
| reg_val |= DMA_MST_CTRL_DIR_READ; |
| else |
| reg_val |= DMA_MST_CTRL_DIR_WRITE; |
| |
| writel(reg_val, &info->reg->dma_mst_ctrl); |
| |
| start_command(info->reg); |
| |
| if (!nand_waitfor_cmd_completion(info->reg)) { |
| if (!is_writing) |
| printf("Read OOB of Page 0x%X timeout\n", page); |
| else |
| printf("Write OOB of Page 0x%X timeout\n", page); |
| return -EIO; |
| } |
| |
| if (with_ecc && !is_writing) { |
| reg_val = (u32)check_ecc_error(info->reg, 0, 0, |
| (u8 *)(chip->oob_poi + free->offset), |
| chip->ecc.layout->oobavail); |
| if (reg_val & ECC_TAG_ERROR) |
| printf("Read OOB of Page 0x%X tag ECC error\n", page); |
| } |
| return 0; |
| } |
| |
| /** |
| * OOB data read function |
| * |
| * @param mtd mtd info structure |
| * @param chip nand chip info structure |
| * @param page page number to read |
| */ |
| static int nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); |
| nand_rw_oob(mtd, chip, page, 0, 0); |
| return 0; |
| } |
| |
| /** |
| * OOB data write function |
| * |
| * @param mtd mtd info structure |
| * @param chip nand chip info structure |
| * @param page page number to write |
| * @return 0 when successfully completed |
| * -EINVAL when chip->oob_poi is not double-word aligned |
| * -EIO when command timeout |
| */ |
| static int nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); |
| |
| return nand_rw_oob(mtd, chip, page, 0, 1); |
| } |
| |
| /** |
| * Set up NAND memory timings according to the provided parameters |
| * |
| * @param timing Timing parameters |
| * @param reg NAND controller register address |
| */ |
| static void setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT], |
| struct nand_ctlr *reg) |
| { |
| u32 reg_val, clk_rate, clk_period, time_val; |
| |
| clk_rate = (u32)clock_get_periph_rate(PERIPH_ID_NDFLASH, |
| CLOCK_ID_PERIPH) / 1000000; |
| clk_period = 1000 / clk_rate; |
| reg_val = ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) << |
| TIMING_TRP_RESP_CNT_SHIFT) & TIMING_TRP_RESP_CNT_MASK; |
| reg_val |= ((timing[FDT_NAND_TWB] / clk_period) << |
| TIMING_TWB_CNT_SHIFT) & TIMING_TWB_CNT_MASK; |
| time_val = timing[FDT_NAND_MAX_TCR_TAR_TRR] / clk_period; |
| if (time_val > 2) |
| reg_val |= ((time_val - 2) << TIMING_TCR_TAR_TRR_CNT_SHIFT) & |
| TIMING_TCR_TAR_TRR_CNT_MASK; |
| reg_val |= ((timing[FDT_NAND_TWHR] / clk_period) << |
| TIMING_TWHR_CNT_SHIFT) & TIMING_TWHR_CNT_MASK; |
| time_val = timing[FDT_NAND_MAX_TCS_TCH_TALS_TALH] / clk_period; |
| if (time_val > 1) |
| reg_val |= ((time_val - 1) << TIMING_TCS_CNT_SHIFT) & |
| TIMING_TCS_CNT_MASK; |
| reg_val |= ((timing[FDT_NAND_TWH] / clk_period) << |
| TIMING_TWH_CNT_SHIFT) & TIMING_TWH_CNT_MASK; |
| reg_val |= ((timing[FDT_NAND_TWP] / clk_period) << |
| TIMING_TWP_CNT_SHIFT) & TIMING_TWP_CNT_MASK; |
| reg_val |= ((timing[FDT_NAND_TRH] / clk_period) << |
| TIMING_TRH_CNT_SHIFT) & TIMING_TRH_CNT_MASK; |
| reg_val |= ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) << |
| TIMING_TRP_CNT_SHIFT) & TIMING_TRP_CNT_MASK; |
| writel(reg_val, ®->timing); |
| |
| reg_val = 0; |
| time_val = timing[FDT_NAND_TADL] / clk_period; |
| if (time_val > 2) |
| reg_val = (time_val - 2) & TIMING2_TADL_CNT_MASK; |
| writel(reg_val, ®->timing2); |
| } |
| |
| /** |
| * Decode NAND parameters from the device tree |
| * |
| * @param blob Device tree blob |
| * @param node Node containing "nand-flash" compatble node |
| * @return 0 if ok, -ve on error (FDT_ERR_...) |
| */ |
| static int fdt_decode_nand(const void *blob, int node, struct fdt_nand *config) |
| { |
| int err; |
| |
| config->reg = (struct nand_ctlr *)fdtdec_get_addr(blob, node, "reg"); |
| config->enabled = fdtdec_get_is_enabled(blob, node); |
| config->width = fdtdec_get_int(blob, node, "nvidia,nand-width", 8); |
| err = fdtdec_decode_gpio(blob, node, "nvidia,wp-gpios", |
| &config->wp_gpio); |
| if (err) |
| return err; |
| err = fdtdec_get_int_array(blob, node, "nvidia,timing", |
| config->timing, FDT_NAND_TIMING_COUNT); |
| if (err < 0) |
| return err; |
| |
| /* Now look up the controller and decode that */ |
| node = fdt_next_node(blob, node, NULL); |
| if (node < 0) |
| return node; |
| |
| return 0; |
| } |
| |
| /** |
| * Board-specific NAND initialization |
| * |
| * @param nand nand chip info structure |
| * @return 0, after initialized, -1 on error |
| */ |
| int tegra_nand_init(struct nand_chip *nand, int devnum) |
| { |
| struct nand_drv *info = &nand_ctrl; |
| struct fdt_nand *config = &info->config; |
| int node, ret; |
| |
| node = fdtdec_next_compatible(gd->fdt_blob, 0, |
| COMPAT_NVIDIA_TEGRA20_NAND); |
| if (node < 0) |
| return -1; |
| if (fdt_decode_nand(gd->fdt_blob, node, config)) { |
| printf("Could not decode nand-flash in device tree\n"); |
| return -1; |
| } |
| if (!config->enabled) |
| return -1; |
| info->reg = config->reg; |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.layout = &eccoob; |
| |
| nand->options = LP_OPTIONS; |
| nand->cmdfunc = nand_command; |
| nand->read_byte = read_byte; |
| nand->read_buf = read_buf; |
| nand->ecc.read_page = nand_read_page_hwecc; |
| nand->ecc.write_page = nand_write_page_hwecc; |
| nand->ecc.read_page_raw = nand_read_page_raw; |
| nand->ecc.write_page_raw = nand_write_page_raw; |
| nand->ecc.read_oob = nand_read_oob; |
| nand->ecc.write_oob = nand_write_oob; |
| nand->ecc.strength = 1; |
| nand->select_chip = nand_select_chip; |
| nand->dev_ready = nand_dev_ready; |
| nand->priv = &nand_ctrl; |
| |
| /* Adjust controller clock rate */ |
| clock_start_periph_pll(PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH, 52000000); |
| |
| /* Adjust timing for NAND device */ |
| setup_timing(config->timing, info->reg); |
| |
| fdtdec_setup_gpio(&config->wp_gpio); |
| gpio_direction_output(config->wp_gpio.gpio, 1); |
| |
| our_mtd = &nand_info[devnum]; |
| our_mtd->priv = nand; |
| ret = nand_scan_ident(our_mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL); |
| if (ret) |
| return ret; |
| |
| nand->ecc.size = our_mtd->writesize; |
| nand->ecc.bytes = our_mtd->oobsize; |
| |
| ret = nand_scan_tail(our_mtd); |
| if (ret) |
| return ret; |
| |
| ret = nand_register(devnum); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| void board_nand_init(void) |
| { |
| struct nand_chip *nand = &nand_chip[0]; |
| |
| if (tegra_nand_init(nand, 0)) |
| puts("Tegra NAND init failed\n"); |
| } |