blob: 301f133ef7ee0c29a4bf95b70ffd34d848c599cf [file] [log] [blame]
/*
* (C) Copyright 2008 - 2009
* Windriver, <www.windriver.com>
* Tom Rix <Tom.Rix@windriver.com>
*
* Copyright 2011 Sebastian Andrzej Siewior <bigeasy@linutronix.de>
*
* Copyright 2014 Linaro, Ltd.
* Rob Herring <robh@kernel.org>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <errno.h>
#include <malloc.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/composite.h>
#include <linux/compiler.h>
#include <version.h>
#include <g_dnl.h>
#include <asm/arch/cpu.h>
#ifdef CONFIG_FASTBOOT_FLASH_MMC_DEV
#include <fb_mmc.h>
#include <fb_storage.h>
#include <fb_fastboot.h>
#include <emmc_partitions.h>
#endif
#ifdef CONFIG_FASTBOOT_FLASH_NAND_DEV
#include <fb_nand.h>
#endif
#include <partition_table.h>
#include <android_image.h>
#include <image.h>
#ifdef CONFIG_AML_ANTIROLLBACK
#include <anti-rollback.h>
#endif
#include <zircon.h>
#include <zircon/hw/gpt.h>
#include <zircon_boot/zircon_boot.h>
#include <efi_loader.h>
DECLARE_GLOBAL_DATA_PTR;
#define FASTBOOT_VERSION "0.4"
#define FASTBOOT_INTERFACE_CLASS 0xff
#define FASTBOOT_INTERFACE_SUB_CLASS 0x42
#define FASTBOOT_INTERFACE_PROTOCOL 0x03
#define ENDPOINT_MAXIMUM_PACKET_SIZE_2_0 (0x0200)
#ifdef CONFIG_DEVICE_PRODUCT
#define DEVICE_PRODUCT CONFIG_DEVICE_PRODUCT
#endif
#define FB_ERR(fmt ...) printf("[ERR]%sL%d:", __func__, __LINE__),printf(fmt)
#define FB_MSG(fmt ...) printf("[MSG]"fmt)
#define FB_WRN(fmt ...) printf("[WRN]"fmt)
#define FB_DBG(...)
#define FB_HERE() printf("f(%s)L%d\n", __func__, __LINE__)
extern void f_dwc_otg_pullup(int is_on);
#ifdef CONFIG_BOOTLOADER_CONTROL_BLOCK
extern int is_partition_logical(const char *parition_name);
#endif
/* The 64 defined bytes plus \0 */
#define EP_BUFFER_SIZE 4096
struct f_fastboot {
struct usb_function usb_function;
/* IN/OUT EP's and corresponding requests */
struct usb_ep *in_ep, *out_ep;
struct usb_request *in_req, *out_req;
};
static inline struct f_fastboot *func_to_fastboot(struct usb_function *f)
{
return container_of(f, struct f_fastboot, usb_function);
}
static struct f_fastboot *fastboot_func;
static unsigned int download_size;
static unsigned int download_bytes;
static struct usb_endpoint_descriptor ep_in = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = ENDPOINT_MAXIMUM_PACKET_SIZE_2_0,
.bInterval = 0x00,
};
static struct usb_endpoint_descriptor ep_out = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = ENDPOINT_MAXIMUM_PACKET_SIZE_2_0,
.bInterval = 0x00,
};
static struct usb_interface_descriptor interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0x00,
.bAlternateSetting = 0x00,
.bNumEndpoints = 0x02,
.bInterfaceClass = FASTBOOT_INTERFACE_CLASS,
.bInterfaceSubClass = FASTBOOT_INTERFACE_SUB_CLASS,
.bInterfaceProtocol = FASTBOOT_INTERFACE_PROTOCOL,
};
static struct usb_descriptor_header *fb_runtime_descs[] = {
(struct usb_descriptor_header *)&interface_desc,
(struct usb_descriptor_header *)&ep_in,
(struct usb_descriptor_header *)&ep_out,
NULL,
};
/*
* static strings, in UTF-8
*/
static const char fastboot_name[] = "Android Fastboot";
static struct usb_string fastboot_string_defs[] = {
[0].s = fastboot_name,
{ } /* end of list */
};
static struct usb_gadget_strings stringtab_fastboot = {
.language = 0x0409, /* en-us */
.strings = fastboot_string_defs,
};
static struct usb_gadget_strings *fastboot_strings[] = {
&stringtab_fastboot,
NULL,
};
#define DRAM_UBOOT_RESERVE 0x01000000
unsigned int ddr_size_usable(unsigned int addr_start)
{
unsigned int ddr_size=0;
unsigned int free_size = 0;
int i;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++)
ddr_size += gd->bd->bi_dram[i].size;
free_size = (ddr_size - DRAM_UBOOT_RESERVE - addr_start - CONFIG_SYS_MALLOC_LEN - CONFIG_SYS_MEM_TOP_HIDE);
#if defined CONFIG_FASTBOOT_MAX_DOWN_SIZE
if (free_size > CONFIG_FASTBOOT_MAX_DOWN_SIZE)
free_size = CONFIG_FASTBOOT_MAX_DOWN_SIZE;
#endif
return free_size;
}
static void rx_handler_command(struct usb_ep *ep, struct usb_request *req);
static char response_str[RESPONSE_LEN + 1];
void fastboot_fail(const char *s)
{
strncpy(response_str, "FAIL", 5);
if (s)strncat(response_str, s, RESPONSE_LEN - 4 - 1) ;
}
void fastboot_okay(const char *s)
{
strncpy(response_str, "OKAY", 5);
if (s)strncat(response_str, s, RESPONSE_LEN - 4 - 1) ;
}
void fastboot_busy(const char* s)
{
strncpy(response_str, "INFO", 4 + 1);//add terminated 0
if (s)strncat(response_str, s, RESPONSE_LEN - 4 - 1) ;
}
int fastboot_is_busy(void)
{
return !strncmp("INFO", response_str, strlen("INFO"));
}
//cb for bulk in_req->complete
static void fastboot_complete(struct usb_ep *ep, struct usb_request *req)
{
int status = req->status;
if ( fastboot_is_busy() && fastboot_func) {
struct usb_ep* out_ep = fastboot_func->out_ep;
struct usb_request* out_req = fastboot_func->out_req;
rx_handler_command(out_ep, out_req);
return;
}
if (!status)
return;
printf("status: %d ep '%s' trans: %d\n", status, ep->name, req->actual);
}
static int fastboot_bind(struct usb_configuration *c, struct usb_function *f)
{
int id;
struct usb_gadget *gadget = c->cdev->gadget;
struct f_fastboot *f_fb = func_to_fastboot(f);
/* DYNAMIC interface numbers assignments */
id = usb_interface_id(c, f);
if (id < 0)
return id;
interface_desc.bInterfaceNumber = id;
id = usb_string_id(c->cdev);
if (id < 0)
return id;
fastboot_string_defs[0].id = id;
interface_desc.iInterface = id;
f_fb->in_ep = usb_ep_autoconfig(gadget, &ep_in);
if (!f_fb->in_ep)
return -ENODEV;
f_fb->in_ep->driver_data = c->cdev;
f_fb->out_ep = usb_ep_autoconfig(gadget, &ep_out);
if (!f_fb->out_ep)
return -ENODEV;
f_fb->out_ep->driver_data = c->cdev;
return 0;
}
static void fastboot_unbind(struct usb_configuration *c, struct usb_function *f)
{
memset(fastboot_func, 0, sizeof(*fastboot_func));
}
static void fastboot_disable(struct usb_function *f)
{
struct f_fastboot *f_fb = func_to_fastboot(f);
usb_ep_disable(f_fb->out_ep);
usb_ep_disable(f_fb->in_ep);
if (f_fb->out_req) {
free(f_fb->out_req->buf);
usb_ep_free_request(f_fb->out_ep, f_fb->out_req);
f_fb->out_req = NULL;
}
if (f_fb->in_req) {
free(f_fb->in_req->buf);
usb_ep_free_request(f_fb->in_ep, f_fb->in_req);
f_fb->in_req = NULL;
}
}
static struct usb_request *fastboot_start_ep(struct usb_ep *ep)
{
struct usb_request *req;
req = usb_ep_alloc_request(ep, 0);
if (!req)
return NULL;
req->length = EP_BUFFER_SIZE;
req->buf = memalign(CONFIG_SYS_CACHELINE_SIZE, EP_BUFFER_SIZE);
if (!req->buf) {
usb_ep_free_request(ep, req);
return NULL;
}
memset(req->buf, 0, req->length);
return req;
}
static int fastboot_set_alt(struct usb_function *f,
unsigned interface, unsigned alt)
{
int ret;
struct f_fastboot *f_fb = func_to_fastboot(f);
debug("%s: func: %s intf: %d alt: %d\n",
__func__, f->name, interface, alt);
/* make sure we don't enable the ep twice */
ret = usb_ep_enable(f_fb->out_ep, &ep_out);
if (ret) {
puts("failed to enable out ep\n");
return ret;
}
f_fb->out_req = fastboot_start_ep(f_fb->out_ep);
if (!f_fb->out_req) {
puts("failed to alloc out req\n");
ret = -EINVAL;
goto err;
}
f_fb->out_req->complete = rx_handler_command;
ret = usb_ep_enable(f_fb->in_ep, &ep_in);
if (ret) {
puts("failed to enable in ep\n");
goto err;
}
f_fb->in_req = fastboot_start_ep(f_fb->in_ep);
if (!f_fb->in_req) {
puts("failed alloc req in\n");
ret = -EINVAL;
goto err;
}
f_fb->in_req->complete = fastboot_complete;
ret = usb_ep_queue(f_fb->out_ep, f_fb->out_req, 0);
if (ret)
goto err;
return 0;
err:
fastboot_disable(f);
return ret;
}
static int fastboot_setup(struct usb_function *f,
const struct usb_ctrlrequest *ctrl)
{
int value = -EOPNOTSUPP;
struct f_fastboot *f_fb = func_to_fastboot(f);
/* composite driver infrastructure handles everything; interface
* activation uses set_alt().
*/
if (((ctrl->bRequestType & USB_RECIP_MASK) == USB_RECIP_ENDPOINT)
&& (ctrl->bRequest == USB_REQ_CLEAR_FEATURE)
&& (ctrl->wValue== USB_ENDPOINT_HALT)) {
switch (ctrl->wIndex & 0xfe) {
case USB_DIR_OUT:
value = ctrl->wLength;
usb_ep_clear_halt(f_fb->out_ep);
break;
case USB_DIR_IN:
value = ctrl->wLength;
usb_ep_clear_halt(f_fb->in_ep);
break;
default:
printf("unknown usb_ctrlrequest\n");
break;
}
}
return value;
}
static int fastboot_add(struct usb_configuration *c)
{
struct f_fastboot *f_fb;
int status;
if (fastboot_func == NULL) {
f_fb = memalign(CONFIG_SYS_CACHELINE_SIZE, sizeof(*f_fb));
if (!f_fb)
return -ENOMEM;
fastboot_func = f_fb;
memset(f_fb, 0, sizeof(*f_fb));
} else {
f_fb = fastboot_func;
}
f_fb->usb_function.name = "f_fastboot";
f_fb->usb_function.hs_descriptors = fb_runtime_descs;
f_fb->usb_function.bind = fastboot_bind;
f_fb->usb_function.unbind = fastboot_unbind;
f_fb->usb_function.set_alt = fastboot_set_alt;
f_fb->usb_function.disable = fastboot_disable;
f_fb->usb_function.strings = fastboot_strings;
f_fb->usb_function.setup = fastboot_setup;
status = usb_add_function(c, &f_fb->usb_function);
if (status) {
free(f_fb);
fastboot_func = NULL;
}
return status;
}
DECLARE_GADGET_BIND_CALLBACK(usb_dnl_fastboot, fastboot_add);
static int fastboot_tx_write(const char *buffer, unsigned int buffer_size)
{
struct usb_request *in_req = fastboot_func->in_req;
int ret;
memcpy(in_req->buf, buffer, buffer_size);
in_req->length = buffer_size;
ret = usb_ep_queue(fastboot_func->in_ep, in_req, 0);
if (ret)
printf("Error %d on queue\n", ret);
return 0;
}
static int fastboot_tx_write_str(const char *buffer)
{
return fastboot_tx_write(buffer, strlen(buffer));
}
static void compl_do_reboot(struct usb_ep *ep, struct usb_request *req)
{
run_command("reboot", 0);
}
static void compl_do_reboot_bootloader(struct usb_ep *ep, struct usb_request *req)
{
if (dynamic_partition)
run_command("reboot bootloader", 0);
else
run_command("reboot fastboot", 0);
}
static void compl_do_reboot_recovery(struct usb_ep *ep,
struct usb_request *req)
{
run_command("reboot recovery", 0);
}
static int strcmp_l1(const char *s1, const char *s2)
{
if (!s1 || !s2) {
return -1;
}
return strncmp(s1, s2, strlen(s1));
}
enum fastboot_locked_access {
NONE = 0,
WRITE = 1 << 0,
ERASE = 1 << 1,
};
struct partition_info_t {
const char *name;
const char *alias; // Partition alias or NULL for none.
uint8_t access; // Fastboot access level when locked.
};
static const struct partition_info_t partition_info[] = {
// clang-format off
{ GUID_BOOTLOADER_NAME, NULL, WRITE | ERASE },
{ GPT_ZIRCON_A_NAME, "boot_a", WRITE | ERASE },
{ GPT_ZIRCON_B_NAME, "boot_b", WRITE | ERASE },
{ GPT_ZIRCON_R_NAME, "boot_r", WRITE | ERASE },
{ GPT_VBMETA_A_NAME, NULL, WRITE | ERASE },
{ GPT_VBMETA_B_NAME, NULL, WRITE | ERASE },
{ GPT_VBMETA_R_NAME, NULL, WRITE | ERASE },
// For Fuchsia the super partition doesn't use Android super format
// but is just the FVM.
{ GPT_FVM_NAME, "super", WRITE | ERASE },
{ GPT_DURABLE_BOOT_NAME, "misc", ERASE },
// Upstream code also aliases userdata -> data and dts -> dtb, but we
// don't need these at the moment.
// clang-format on
};
static uint8_t get_fastboot_lock_access(const char *part)
{
for (size_t i = 0; i < ARRAY_SIZE(partition_info); i++) {
if (strcmp(part, partition_info[i].name) == 0) {
return partition_info[i].access;
}
}
return NONE;
}
// Returns the real partition name for the given alias.
//
// We sometimes want to support flashing tools that have different expectations
// around partition names. This maps all supported partition names and aliases
// into the actual partition name.
//
// Returns NULL if the partition does not exist either in the GPT or the
// known partition list.
static const char *get_real_part_name(char *part)
{
// If the partition exists in the GPT, it's the real name.
if (find_mmc_partition_by_name(part)) {
return part;
}
// Otherwise, try to find it in the known partition list.
//
// If a partition exists in the list we always allow it without checking
// the GPT. This is to support virtual partitions e.g. "bootloader"
// which aren't actually in the GPT, but it's still up to the caller to
// handle the resulting partition properly.
for (size_t i = 0; i < ARRAY_SIZE(partition_info); i++) {
const struct partition_info_t *info = &partition_info[i];
if (strcmp(info->name, part) == 0) {
return part;
}
if (info->alias && strcmp(part, info->alias) == 0) {
printf("Partition alias: %s -> %s\n", part, info->name);
return info->name;
}
}
return NULL;
}
// Returns true if `c` is a valid slot character (a, b, r).
static bool is_slot_char(char c)
{
return c == 'a' || c == 'b' || c == 'r';
}
// Parses a partition name out of a fastboot command.
//
// On input `cmd` should be the command and partition name, e.g. "flash:foo".
// This string will be modified in-place, but the returned string may or may
// not point to this buffer.
//
// The returned string:
// * skips the leading command and colon
// * removes any partition double-slotting
// * calls `get_real_part_name()` to resolve aliases
//
// Double-slotted partitions (e.g. `zircon_a_a`) will drop the latter slot. This
// can happen when Fuchsia tooling explicitly provides a slot to fastboot via
// `fastboot flash <part>_a`, because fastboot itself will then query whether
// the partition is slotted and append another slot suffix if so.
//
// We may at some point want to fix fastboot to not append a suffix if the
// partition is already slotted, but working around it here is easier for now.
//
// On failure, this updates the fastboot TX buffer with a failure message and
// returns NULL.
static const char *parse_fb_cmd_partition(char *cmd)
{
strsep(&cmd, ":");
if (cmd == NULL) {
fastboot_tx_write_str("FAILmissing partition name");
return NULL;
}
// Check for a double-slotted partition. In this case we want to drop
// the fastboot-appended suffix in favor of the suffix explicitly given
// by the user.
int part_len = strlen(cmd);
if (part_len > 4) {
char *suffix = &cmd[part_len - 4];
if (suffix[0] == '_' && is_slot_char(suffix[1]) &&
suffix[2] == '_' && is_slot_char(suffix[3])) {
printf("Partition slot fix: %s -> ", cmd);
suffix[2] = '\0';
printf("%s\n", cmd);
}
}
const char *part = get_real_part_name(cmd);
if (part == NULL) {
fastboot_tx_write_str("FAILunknown partition");
return NULL;
}
return part;
}
static void cb_reboot(struct usb_ep *ep, struct usb_request *req)
{
char *cmd = req->buf;
if (!strcmp("reboot", cmd)) {
fastboot_func->in_req->complete = compl_do_reboot;
fastboot_tx_write_str("OKAY");
} else if (!strcmp("reboot-bootloader", cmd)) {
fastboot_func->in_req->complete = compl_do_reboot_bootloader;
fastboot_tx_write_str("OKAY");
} else if (!strcmp("reboot-recovery", cmd)) {
fastboot_func->in_req->complete = compl_do_reboot_recovery;
fastboot_tx_write_str("OKAY");
} else if (!strcmp("reboot-fastboot", cmd)) {
// TODO(b/285184591) support userspace flashing for "super"?
fastboot_tx_write_str("FAILuserspace fastboot unsupported");
} else {
fastboot_tx_write_str("FAILunknown reboot command");
}
}
void dump_lock_info(LockData_t* info)
{
printf("info->version_major = %d\n", info->version_major);
printf("info->version_minor = %d\n", info->version_minor);
printf("info->lock_state = %d\n", info->lock_state);
printf("info->lock_critical_state = %d\n", info->lock_critical_state);
printf("info->lock_bootloader = %d\n", info->lock_bootloader);
}
static int check_lock(void)
{
char *lock_s;
LockData_t* info;
lock_s = getenv("lock");
if (!lock_s) {
printf("lock state is NULL \n");
lock_s = "10000000";
setenv("lock", "10000000");
run_command("defenv_reserv; saveenv;", 0);
}
FB_DBG("lock state: %s\n", lock_s);
info = malloc(sizeof(struct LockData));
if (info) {
memset(info,0,LOCK_DATA_SIZE);
info->version_major = (int)(lock_s[0] - '0');
info->version_minor = (int)(lock_s[1] - '0');
info->lock_state = (int)(lock_s[4] - '0');
info->lock_critical_state = (int)(lock_s[5] - '0');
info->lock_bootloader = (int)(lock_s[6] - '0');
dump_lock_info(info);
} else
return 0;
if ((info->lock_state == 1 ) || ( info->lock_critical_state == 1 )) {
free (info);
return 1;
}
else {
free (info);
return 0;
}
}
static const char* getvar_list[] = {
"version-baseband", "version-bootloader", "version", "hw-revision", "max-download-size",
"serialno", "product", "off-mode-charge", "variant", "battery-soc-ok",
"battery-voltage", "partition-type:boot", "partition-size:boot",
"partition-type:system", "partition-size:system", "partition-type:vendor", "partition-size:vendor",
"partition-type:odm", "partition-size:odm", "partition-type:data", "partition-size:data",
"erase-block-size", "logical-block-size", "secure", "unlocked",
};
static const char* getvar_list_dynamic[] = {
"hw-revision", "battery-voltage", "is-userspace", "is-logical:data",
"is-logical:metadata", "is-logical:misc", "is-logical:super", "is-logical:boot",
"is-logical:system", "is-logical:vendor", "is-logical:product", "is-logical:odm",
"slot-count", "max-download-size", "serialno", "product", "unlocked", "has-slot:data",
"has-slot:metadata", "has-slot:misc", "has-slot:super", "has-slot:boot",
"has-slot:system", "has-slot:vendor", "has-slot:product", "has-slot:odm",
"secure", "super-partition-name", "version-baseband", "version-bootloader",
"partition-size:boot", "partition-size:metadata", "partition-size:misc",
"partition-size:super", "partition-size:data", "version",
};
static const char *getvar_list_ab[] = {
"current-slot",
"has-slot:" GPT_DURABLE_BOOT_NAME,
"has-slot:" GPT_FVM_NAME,
// `has-slot` queries the generic base name without any slot suffix.
"has-slot:vbmeta",
"has-slot:zircon",
"hw-revision",
"is-userspace",
"max-download-size",
"partition-size:" GPT_DURABLE_BOOT_NAME,
"partition-size:" GPT_FVM_NAME,
"partition-size:" GPT_VBMETA_A_NAME,
"partition-size:" GPT_VBMETA_B_NAME,
"partition-size:" GPT_VBMETA_R_NAME,
"partition-size:" GPT_ZIRCON_A_NAME,
"partition-size:" GPT_ZIRCON_B_NAME,
"partition-size:" GPT_ZIRCON_R_NAME,
"product",
"serialno",
"slot-count",
"slot-last-set-active",
"slot-retry-count:a",
"slot-retry-count:b",
"slot-successful:a",
"slot-successful:b",
"slot-suffixes",
"slot-unbootable:a",
"slot-unbootable:b",
"version",
"version-bootloader",
"vx-locked",
"vx-unlockable",
};
extern ZirconBootOps zb_ops;
// Returns slot info for the given slot string "a" or "b", or NULL on failure.
// The returned struct is only valid until the next call to this function.
static AbrSlotInfo* get_slot_info(const char *suffix)
{
AbrSlotIndex slot_index;
if (strcmp(suffix, "a") == 0) {
slot_index = kAbrSlotIndexA;
} else if (strcmp(suffix, "b") == 0) {
slot_index = kAbrSlotIndexB;
} else {
return NULL;
}
static AbrSlotInfo slot_info;
AbrOps ops = GetAbrOpsFromZirconBootOps(&zb_ops);
if (AbrGetSlotInfo(&ops, slot_index, &slot_info) != kAbrResultOk) {
return NULL;
}
return &slot_info;
}
static void cb_getvar(struct usb_ep *ep, struct usb_request *req)
{
char *cmd = req->buf;
char cmdBuf[RESPONSE_LEN];
char* response = response_str;
char *s1;
size_t chars_left;
strcpy(response, "OKAY");
chars_left = sizeof(response_str) - strlen(response) - 1;
memcpy(cmdBuf, cmd, strnlen(cmd, RESPONSE_LEN-1)+1);
cmd = cmdBuf;
strsep(&cmd, ":");
FB_DBG("cb_getvar: %s\n", cmd);
if (!cmd) {
error("missing variable\n");
fastboot_tx_write_str("FAILmissing var");
return;
}
if (!strncmp(cmd, "all", 3)) {
static int cmdIndex = 0;
int getvar_num = 0;
if (has_boot_slot == 1 && strlen(getvar_list_ab[cmdIndex]) < 64) {
strcpy(cmd, getvar_list_ab[cmdIndex]);
getvar_num = (sizeof(getvar_list_ab) / sizeof(getvar_list_ab[0]));
} else if (dynamic_partition && strlen(getvar_list_dynamic[cmdIndex]) < 64) {
strcpy(cmd, getvar_list_dynamic[cmdIndex]);//only support no-arg cmd
getvar_num = (sizeof(getvar_list_dynamic) / sizeof(getvar_list_dynamic[0]));
} else if (strlen(getvar_list[cmdIndex]) < 64) {
strcpy(cmd, getvar_list[cmdIndex]);//only support no-arg cmd
getvar_num = (sizeof(getvar_list) / sizeof(getvar_list[0]));
}
FB_DBG("getvar_num: %d\n", getvar_num);
if (++cmdIndex > getvar_num) {
// Reset the index for the next `getvar all` and return
// the final empty OKAY response to end the transaction.
cmdIndex = 0;
fastboot_tx_write_str(response);
return;
}
fastboot_busy(NULL);
FB_DBG("all cmd:%s\n", cmd);
strncat(response, cmd, chars_left);
strncat(response, ": ", 2);
chars_left -= strlen(cmd) + 1;
}
if (!strcmp_l1("version-baseband", cmd)) {
strncat(response, "N/A", chars_left);
} else if (!strcmp_l1("version-bootloader", cmd) ||
!strcmp_l1("bootloader-version", cmd)) {
strncat(response, U_BOOT_VERSION, chars_left);
} else if (!strcmp_l1("hw-revision", cmd)) {
strncat(response, "vim3", chars_left);
} else if (!strcmp_l1("version", cmd)) {
strncat(response, FASTBOOT_VERSION, chars_left);
} else if (!strcmp_l1("off-mode-charge", cmd)) {
strncat(response, "0", chars_left);
} else if (!strcmp_l1("variant", cmd)) {
strncat(response, "US", chars_left);
} else if (!strcmp_l1("battery-soc-ok", cmd)) {
strncat(response, "yes", chars_left);
} else if (!strcmp_l1("battery-voltage", cmd)) {
strncat(response, "4", chars_left);
} else if (!strcmp_l1("is-userspace", cmd)) {
strncat(response, "no", chars_left);
} else if (!strcmp_l1("is-logical", cmd)) {
strsep(&cmd, ":");
printf("partition is %s\n", cmd);
if (!dynamic_partition) {
strncat(response, "no", chars_left);
} else {
#ifdef CONFIG_BOOTLOADER_CONTROL_BLOCK
if (is_partition_logical(cmd) == 0) {
error("%s is logic partition\n", cmd);
strncat(response, "yes", chars_left);
} else {
strncat(response, "no", chars_left);
}
#else
strncat(response, "no", chars_left);
#endif
}
} else if (!strcmp_l1("super-partition-name", cmd)) {
char *slot_name;
slot_name = getenv("slot-suffixes");
if (has_boot_slot == 0) {
strncat(response, "super", chars_left);
} else {
printf("slot-suffixes: %s\n", slot_name);
if (strcmp(slot_name, "0") == 0) {
printf("active_slot is %s\n", "a");
strncat(response, "super_a", chars_left);
} else if (strcmp(slot_name, "1") == 0) {
printf("active_slot is %s\n", "b");
strncat(response, "super_b", chars_left);
}
}
} else if (!strcmp_l1("downloadsize", cmd) ||
!strcmp_l1("max-download-size", cmd)) {
char str_num[12];
sprintf(str_num, "0x%08x", ddr_size_usable(CONFIG_USB_FASTBOOT_BUF_ADDR));
strncat(response, str_num, chars_left);
} else if (!strcmp_l1("serialno", cmd)) {
// The reported serialno must be the same as what was registered
// in the USB descriptor iSerial field, since that's how
// fastboot discovers devices.
strncat(response, g_dnl_get_serialnumber(), chars_left);
} else if (!strcmp_l1("product", cmd)) {
#ifdef DEVICE_PRODUCT
s1 = DEVICE_PRODUCT;
FB_DBG("DEVICE_PRODUCT: %s\n", s1);
#else
s1 = getenv("device_product");
FB_DBG("device_product: %s\n", s1);
#endif
strncat(response, s1, chars_left);
} else if (!strcmp_l1("slot-count", cmd)) {
strncat(response, "2", chars_left);
} else if (!strcmp_l1("slot-suffixes", cmd)) {
strncat(response, "a,b", chars_left);
} else if (!strcmp_l1("current-slot", cmd)) {
AbrOps ops = GetAbrOpsFromZirconBootOps(&zb_ops);
const char *slot =
AbrGetSlotSuffix(AbrGetBootSlot(&ops, false, NULL));
if (slot) {
strncat(response, slot + 1, chars_left);
FB_DBG("current-slot: %s\n", slot);
}
} else if (!strcmp_l1("slot-last-set-active", cmd)) {
AbrOps ops = GetAbrOpsFromZirconBootOps(&zb_ops);
AbrSlotIndex slot_index;
if (AbrGetSlotLastMarkedActive(&ops, &slot_index) !=
kAbrResultOk) {
fastboot_fail("Failed to fetch last active slot");
} else {
const char *slot = AbrGetSlotSuffix(slot_index);
strncat(response, slot + 1, chars_left);
}
} else if (!strcmp_l1("has-slot:", cmd)) {
// Can't use `parse_fb_cmd_partition()` here because the
// given name is unslotted which might not exist, e.g
// "zircon" as opposed to "zircon_a".
strsep(&cmd, ":");
if (!cmd) {
fastboot_tx_write_str("FAILmissing partition name");
return;
}
char slotted_part[36];
snprintf(slotted_part, sizeof(slotted_part), "%s_a", cmd);
if (get_real_part_name(slotted_part)) {
// If <part>_a exists then <part> supports slots.
strncat(response, "yes", chars_left);
} else if (get_real_part_name(cmd)) {
// If only <part> exists it does not support slots.
strncat(response, "no", chars_left);
} else {
// If neither exists it's an unknown partition.
fastboot_tx_write_str("FAILunknown partition");
return;
}
} else if (!strncmp("partition-size", cmd, strlen("partition-size"))) {
char str_num[20];
struct partitions *pPartition;
uint64_t sz;
const char *part = parse_fb_cmd_partition(cmd);
if (!part) {
return;
}
if (!strncmp("mbr", part, strlen("mbr"))) {
strcpy(response, "FAILVariable not implemented");
} else {
if (!strcmp("bootloader", part)) {
// boot0 and boot1 have the same size.
mmc_boot_size("boot0", &sz);
FB_DBG("size:%016llx\n", sz);
sprintf(str_num, "%016llx", sz);
} else {
pPartition = find_mmc_partition_by_name(part);
if (pPartition) {
FB_DBG("size:%016llx\n", pPartition->size);
if (strcmp(part, "data") == 0) {
FB_DBG("reserve 0x4000 for fde data\n");
sz = pPartition->size - 0x4000;
FB_DBG("data size :%016llx\n", sz);
sprintf(str_num, "%016llx", sz);
} else {
sprintf(str_num, "%016llx", pPartition->size);
}
} else {
FB_DBG("find_mmc_partition_by_name fail\n");
sprintf(str_num, "get fail");
}
}
strncat(response, str_num, chars_left);
}
} else if (!strcmp_l1("partition-type:cache", cmd)) {
if (has_boot_slot == 0) {
strncat(response, "ext4", chars_left);
}
} else if (!strcmp_l1("partition-type:data", cmd)) {
strncat(response, "ext4", chars_left);
} else if (!strcmp_l1("partition-type:userdata", cmd)) {
strncat(response, "ext4", chars_left);
} else if (!strcmp_l1("partition-type:system", cmd)) {
strncat(response, "ext4", chars_left);
} else if (!strcmp_l1("partition-type:vendor", cmd)) {
strncat(response, "ext4", chars_left);
} else if (!strcmp_l1("partition-type:odm", cmd)) {
strncat(response, "ext4", chars_left);
} else if (!strcmp_l1("partition-type:tee", cmd)) {
strncat(response, "ext4", chars_left);
} else if (!strcmp_l1("partition-type:param", cmd)) {
strncat(response, "ext4", chars_left);
} else if (!strcmp_l1("partition-type:product", cmd)) {
strncat(response, "ext4", chars_left);
} else if (!strcmp_l1("partition-type:metadata", cmd)) {
strncat(response, "ext4", chars_left);
} else if (!strncmp("partition-type", cmd, strlen("partition-type"))) {
strncat(response, "raw", chars_left);
} else if (!strcmp_l1("erase-block-size", cmd) ||
!strcmp_l1("logical-block-size", cmd)) {
strncat(response, "2000", chars_left);
} else if (!strcmp_l1("secure", cmd)) {
if (check_lock()) {
strncat(response, "yes", chars_left);
} else {
strncat(response, "no", chars_left);
}
} else if (!strcmp_l1("unlocked", cmd)) {
if (check_lock()) {
strncat(response, "no", chars_left);
} else {
strncat(response, "yes", chars_left);
}
} else if (!strcmp_l1("slot-successful", cmd)) {
strsep(&cmd, ":");
FB_DBG("cmd is %s\n", cmd);
AbrSlotInfo *slot_info = get_slot_info(cmd);
if (slot_info == NULL) {
fastboot_fail("Invalid slot suffix");
} else {
strncat(response,
slot_info->is_marked_successful ? "yes" : "no",
chars_left);
}
} else if (!strcmp_l1("slot-unbootable", cmd)) {
strsep(&cmd, ":");
FB_DBG("cmd is %s\n", cmd);
AbrSlotInfo *slot_info = get_slot_info(cmd);
if (slot_info == NULL) {
fastboot_fail("Invalid slot suffix");
} else {
strncat(response, slot_info->is_bootable ? "no" : "yes",
chars_left);
}
} else if (!strcmp_l1("slot-retry-count", cmd)) {
strsep(&cmd, ":");
FB_DBG("cmd is %s\n", cmd);
AbrSlotInfo *slot_info = get_slot_info(cmd);
if (slot_info == NULL) {
fastboot_fail("Invalid slot suffix");
} else {
char buf[4];
sprintf(buf, "%d", slot_info->num_tries_remaining);
strncat(response, buf, chars_left);
}
} else if (!strcmp_l1("vx-locked", cmd)) {
// VIM3 is dev only. We don't consider any lock/unlock feature for now.
strncat(response, "yes", chars_left);
} else if (!strcmp_l1("bootloader-variant", cmd)) {
strncat(response, "dev", chars_left);
} else if (!strcmp_l1("vx-unlockable", cmd)) {
strncat(response, "no", chars_left);
} else {
error("unknown variable: %s\n", cmd);
strcpy(response, "FAILVariable not implemented");
}
fastboot_tx_write_str(response);
}
static unsigned int rx_bytes_expected(void)
{
int rx_remain = download_size - download_bytes;
if (rx_remain < 0)
return 0;
if (rx_remain > EP_BUFFER_SIZE)
return EP_BUFFER_SIZE;
return rx_remain;
}
#define BYTES_PER_DOT 0x20000
static void rx_handler_dl_image(struct usb_ep *ep, struct usb_request *req)
{
char response[RESPONSE_LEN];
unsigned int transfer_size = download_size - download_bytes;
const unsigned char *buffer = req->buf;
unsigned int buffer_size = req->actual;
unsigned int pre_dot_num, now_dot_num;
if (req->status != 0) {
printf("Bad status: %d\n", req->status);
return;
}
if (buffer_size < transfer_size)
transfer_size = buffer_size;
memcpy((void *)CONFIG_USB_FASTBOOT_BUF_ADDR + download_bytes,
buffer, transfer_size);
pre_dot_num = download_bytes / BYTES_PER_DOT;
download_bytes += transfer_size;
now_dot_num = download_bytes / BYTES_PER_DOT;
if (pre_dot_num != now_dot_num) {
putc('.');
if (!(now_dot_num % 74))
putc('\n');
}
/* Check if transfer is done */
if (download_bytes >= download_size) {
/*
* Reset global transfer variable, keep download_bytes because
* it will be used in the next possible flashing command
*/
download_size = 0;
req->complete = rx_handler_command;
req->length = EP_BUFFER_SIZE;
sprintf(response, "OKAY");
fastboot_tx_write_str(response);
printf("\ndownloading of %u bytes finished\n", download_bytes);
} else {
req->length = rx_bytes_expected();
if (req->length < ep->maxpacket)
req->length = ep->maxpacket;
}
req->actual = 0;
usb_ep_queue(ep, req, 0);
}
static void cb_download(struct usb_ep *ep, struct usb_request *req)
{
char *cmd = req->buf;
char response[RESPONSE_LEN];
printf("cmd cb_download is %s\n", cmd);
strsep(&cmd, ":");
download_size = simple_strtoul(cmd, NULL, 16);
download_bytes = 0;
printf("Starting download of %u bytes\n", download_size);
if (0 == download_size) {
sprintf(response, "FAILdata invalid size");
} else if (download_size > ddr_size_usable(CONFIG_USB_FASTBOOT_BUF_ADDR)) {
download_size = 0;
sprintf(response, "FAILdata too large");
} else {
sprintf(response, "DATA%08x", download_size);
req->complete = rx_handler_dl_image;
req->length = rx_bytes_expected();
if (req->length < ep->maxpacket)
req->length = ep->maxpacket;
}
fastboot_tx_write_str(response);
}
typedef struct andr_img_hdr boot_img_hdr;
static void do_bootm_on_complete(struct usb_ep *ep, struct usb_request *req)
{
zircon_ram_boot();
/* This only happens if image is somehow faulty so we start over */
printf("Failed to boot RAM image; rebooting\n");
do_reset(NULL, 0, 0, NULL);
}
static void cb_boot(struct usb_ep *ep, struct usb_request *req)
{
if (zircon_ram_load((const void *)CONFIG_USB_FASTBOOT_BUF_ADDR,
download_bytes) != 0) {
fastboot_tx_write_str("FAILFailed to verify boot image");
return;
}
fastboot_func->in_req->complete = do_bootm_on_complete;
fastboot_tx_write_str("OKAY");
}
static void do_exit_on_complete(struct usb_ep *ep, struct usb_request *req)
{
puts("Booting kernel..\n");
run_command("run storeboot", 0);
/* This only happens if image is somehow faulty so we start over */
do_reset(NULL, 0, 0, NULL);
}
static void cb_continue(struct usb_ep *ep, struct usb_request *req)
{
fastboot_func->in_req->complete = do_exit_on_complete;
fastboot_tx_write_str("OKAY");
}
static void cb_flashing(struct usb_ep *ep, struct usb_request *req)
{
char *cmd;
char* response = response_str;
char* lock_s;
LockData_t* info;
size_t chars_left;
char lock_d[LOCK_DATA_SIZE];
lock_s = getenv("lock");
if (!lock_s) {
printf("lock state is NULL \n");
strcpy(lock_d, "10000000");
lock_s = "10000000";
setenv("lock", "10000000");
run_command("defenv_reserv; saveenv;", 0);
} else {
printf("lock state: %s\n", lock_s);
if (strlen(lock_s) > 15)
strncpy(lock_d, lock_s, 15);
else
strncpy(lock_d, lock_s, strlen(lock_s));
}
info = malloc(sizeof(struct LockData));
if (!info) {
error("malloc error\n");
fastboot_tx_write_str("FAILmalloc error");
return;
}
memset(info,0,LOCK_DATA_SIZE);
info->version_major = (int)(lock_d[0] - '0');
info->version_minor = (int)(lock_d[1] - '0');
info->lock_state = (int)(lock_d[4] - '0');
info->lock_critical_state = (int)(lock_d[5] - '0');
info->lock_bootloader = (int)(lock_d[6] - '0');
dump_lock_info(info);
strcpy(response, "OKAY");
chars_left = sizeof(response_str) - strlen(response) - 1;
cmd = req->buf;
strsep(&cmd, " ");
printf("cb_flashing: %s\n", cmd);
if (!cmd) {
error("missing variable\n");
fastboot_tx_write_str("FAILmissing var");
free(info);
return;
}
if (!strcmp_l1("unlock_critical", cmd)) {
info->lock_critical_state = 0;
} else if (!strcmp_l1("lock_critical", cmd)) {
info->lock_critical_state = 1;
} else if (!strcmp_l1("get_unlock_ability", cmd)) {
char str_num[8];
sprintf(str_num, "%d", info->lock_state);
strncat(response, str_num, chars_left);
} else if (!strcmp_l1("get_unlock_bootloader_nonce", cmd)) {
char str_num[8];
sprintf(str_num, "%d", info->lock_critical_state);
strncat(response, str_num, chars_left);
} else if (!strcmp_l1("unlock_bootloader", cmd)) {
strncat(response, "please run flashing unlock & flashing unlock_critical before write", chars_left);
} else if (!strcmp_l1("lock_bootloader", cmd)) {
info->lock_bootloader = 1;
} else if (!strcmp_l1("unlock", cmd)) {
if (info->lock_state == 1 ) {
char *avb_s;
avb_s = getenv("avb2");
if (avb_s == NULL) {
run_command("get_avb_mode;", 0);
avb_s = getenv("avb2");
}
printf("avb2: %s\n", avb_s);
if (strcmp(avb_s, "1") == 0) {
#ifdef CONFIG_AML_ANTIROLLBACK
if (avb_unlock()) {
printf("unlocking device. Erasing userdata partition!\n");
run_command("store erase partition data", 0);
} else {
printf("unlock failed!\n");
}
#else
printf("unlocking device. Erasing userdata partition!\n");
run_command("store erase partition data", 0);
#endif
}
}
info->lock_state = 0;
} else if (!strcmp_l1("lock", cmd)) {
if (info->lock_state == 0 ) {
char *avb_s;
avb_s = getenv("avb2");
if (avb_s == NULL) {
run_command("get_avb_mode;", 0);
avb_s = getenv("avb2");
}
printf("avb2: %s\n", avb_s);
if (strcmp(avb_s, "1") == 0) {
#ifdef CONFIG_AML_ANTIROLLBACK
if (avb_lock()) {
printf("lock failed!\n");
} else {
printf("locking device. Erasing userdata partition!\n");
run_command("store erase partition data", 0);
}
#else
printf("locking device. Erasing userdata partition!\n");
run_command("store erase partition data", 0);
#endif
}
}
info->lock_state = 1;
} else {
error("unknown variable: %s\n", cmd);
strcpy(response, "FAILVariable not implemented");
}
dump_lock_info(info);
sprintf(lock_d, "%d%d00%d%d%d0", info->version_major, info->version_minor, info->lock_state, info->lock_critical_state, info->lock_bootloader);
FB_DBG("lock_d state: %s\n", lock_d);
setenv("lock", lock_d);
run_command("defenv_reserv; saveenv;", 0);
FB_DBG("response: %s\n", response);
free(info);
fastboot_tx_write_str(response);
}
#ifdef CONFIG_FASTBOOT_FLASH
static void cb_flash(struct usb_ep *ep, struct usb_request *req)
{
char *cmd = req->buf;
char* response = response_str;
printf("cmd cb_flash is %s\n", cmd);
const char *part = parse_fb_cmd_partition(cmd);
if (!part) {
return;
}
if (check_lock() && (get_fastboot_lock_access(part) & WRITE) == 0) {
error("Cannot flash %s while locked\n", part);
fastboot_tx_write_str("FAILlocked partition");
return;
}
#ifdef CONFIG_BOOTLOADER_CONTROL_BLOCK
if (dynamic_partition) {
if (is_partition_logical(part) == 0) {
error("%s is logic partition, can not write here.......\n",
part);
fastboot_tx_write_str("FAILlogic partition");
return;
}
}
#endif
//strcpy(response, "FAILno flash device defined");
if (is_mainstorage_emmc()) {
#ifdef CONFIG_FASTBOOT_FLASH_MMC_DEV
fb_mmc_flash_write(part, (void *)CONFIG_USB_FASTBOOT_BUF_ADDR,
download_bytes);
#endif
} else if (is_mainstorage_nand()) {
#ifdef CONFIG_FASTBOOT_FLASH_NAND_DEV
fb_nand_flash_write(part, (void *)CONFIG_USB_FASTBOOT_BUF_ADDR,
download_bytes);
#else
fastboot_fail("not support nftl\n");
#endif
} else {
printf("error: no valid fastboot device\n");
fastboot_fail("no vaild device\n");
}
fastboot_tx_write_str(response);
}
#endif
static void cb_set_active(struct usb_ep *ep, struct usb_request *req)
{
char *cmd = req->buf;
int ret = 0;
printf("cmd cb_set_active is %s\n", cmd);
strsep(&cmd, ":");
if (!cmd) {
error("missing slot name\n");
fastboot_tx_write_str("FAILmissing slot name");
return;
}
AbrOps ops = GetAbrOpsFromZirconBootOps(&zb_ops);
AbrSlotIndex slot;
if (strcmp(cmd, "a") == 0) {
slot = kAbrSlotIndexA;
} else if (strcmp(cmd, "b") == 0) {
slot = kAbrSlotIndexB;
} else {
printf("Cannot set slot %s active.\n", cmd);
fastboot_tx_write_str("FAILunsupported slot");
return;
}
AbrResult abr_res = AbrMarkSlotActive(&ops, slot);
printf("abr_res = %d\n", ret);
if (abr_res == kAbrResultOk)
fastboot_tx_write_str("OKAY");
else
fastboot_tx_write_str("FAILset slot error");
}
static void cb_flashall(struct usb_ep *ep, struct usb_request *req)
{
char* response = response_str;
char *cmd = req->buf;
printf("cmd cb_flashall is %s\n", cmd);
if (check_lock()) {
error("device is locked, can not run this cmd.Please flashing unlock & flashing unlock_critical\n");
fastboot_tx_write_str("FAILlocked device");
return;
}
//strcpy(response, "FAILno flash device defined");
if (is_mainstorage_emmc()) {
#ifdef CONFIG_FASTBOOT_FLASH_MMC_DEV
fb_mmc_flash_write(cmd, (void *)CONFIG_USB_FASTBOOT_BUF_ADDR,
download_bytes);
#endif
} else if (is_mainstorage_nand()) {
#ifdef CONFIG_FASTBOOT_FLASH_NAND_DEV
fb_nand_flash_write(cmd, (void *)CONFIG_USB_FASTBOOT_BUF_ADDR,
download_bytes);
#else
fastboot_fail("not support nftl\n");
#endif
} else {
printf("error: no valid fastboot device\n");
fastboot_fail("no vaild device\n");
}
fastboot_tx_write_str(response);
}
static void cb_erase(struct usb_ep *ep, struct usb_request *req)
{
char* response = response_str;
char *cmd = req->buf;
printf("cmd cb_erase is %s\n", cmd);
const char *part = parse_fb_cmd_partition(cmd);
if (!part) {
return;
}
if (check_lock() && (get_fastboot_lock_access(part) & ERASE) == 0) {
error("Cannot erase %s while locked\n", part);
fastboot_tx_write_str("FAILlocked partition");
return;
}
//strcpy(response, "FAILno erase device defined");
if (is_mainstorage_emmc()) {
#ifdef CONFIG_FASTBOOT_FLASH_MMC_DEV
fb_mmc_erase_write(part, (void *)CONFIG_USB_FASTBOOT_BUF_ADDR);
#endif
} else if (is_mainstorage_nand()) {
#ifdef CONFIG_FASTBOOT_FLASH_NAND_DEV
fb_nand_erase(part, (void *)CONFIG_USB_FASTBOOT_BUF_ADDR);
#else
fastboot_fail("not support nftl\n");
#endif
} else {
printf("error: no valid fastboot device\n");
fastboot_fail("no vaild device\n");
}
fastboot_tx_write_str(response);
}
static void cb_devices(struct usb_ep *ep, struct usb_request *req)
{
char response[RESPONSE_LEN];
char *cmd = req->buf;
printf("cmd is %s\n", cmd);
strcpy(response, "AMLOGIC");
fastboot_tx_write_str(response);
}
static void cb_oem_cmd(struct usb_ep *ep, struct usb_request *req)
{
char response[RESPONSE_LEN/2 + 1];
char* cmd = req->buf;
printf("oem cmd[%s]\n", cmd);
memcpy(response, cmd, strnlen(cmd, RESPONSE_LEN/2)+1);//+1 to terminate str
cmd = response;
strsep(&cmd, " ");
FB_MSG("To run cmd[%s]\n", cmd);
run_command(cmd, 0);
fastboot_okay(response);
fastboot_tx_write_str(response_str);
return ;
}
static void cb_staged_bootloader_file(struct usb_ep *ep,
struct usb_request *req)
{
char *name = req->buf;
// skip past "oem add-staged-bootloader-file"
if (!(strsep(&name, " ") && strsep(&name, " ") && name)) {
fastboot_fail("No file name given");
fastboot_tx_write_str(response_str);
return;
}
if (download_bytes == 0) {
fastboot_fail("Nothing staged");
fastboot_tx_write_str(response_str);
return;
}
if (AddBootloaderFiles(name, (const void *)CONFIG_USB_FASTBOOT_BUF_ADDR,
download_bytes) != ZBI_RESULT_OK) {
fastboot_fail("Failed to add ZBI file item");
fastboot_tx_write_str(response_str);
return;
}
fastboot_okay("");
fastboot_tx_write_str(response_str);
}
static void cb_run_staged_efi(struct usb_ep *ep, struct usb_request *req)
{
// TODO(313510811): Figure out security verification for the binary, i.e.
// using EFI secure boot.
if (efi_check_pe((void *)CONFIG_USB_FASTBOOT_BUF_ADDR, download_bytes,
NULL) != EFI_SUCCESS) {
fastboot_tx_write_str("FAILNo valid EFI image staged");
return;
}
char cmd[128];
snprintf(cmd, sizeof(cmd), "bootefi 0x%x:0x%x ${dtb_mem_addr}",
CONFIG_USB_FASTBOOT_BUF_ADDR, download_bytes);
if (run_command(cmd, 0)) {
fastboot_tx_write_str("FAILFailed to run EFI binary");
} else {
fastboot_tx_write_str("OKAY");
}
}
struct cmd_dispatch_info {
char *cmd;
void (*cb)(struct usb_ep *ep, struct usb_request *req);
};
static const struct cmd_dispatch_info cmd_dispatch_info[] = {
{
// Due to command prefix matching, this catches all the
// reboot* commands.
.cmd = "reboot",
.cb = cb_reboot,
},
{
.cmd = "getvar:",
.cb = cb_getvar,
},
{
.cmd = "download:",
.cb = cb_download,
},
{
.cmd = "boot",
.cb = cb_boot,
},
{
.cmd = "continue",
.cb = cb_continue,
},
{
.cmd = "flashing",
.cb = cb_flashing,
},
#ifdef CONFIG_FASTBOOT_FLASH
{
.cmd = "flash",
.cb = cb_flash,
},
#endif
{
.cmd = "update",
.cb = cb_download,
},
{
.cmd = "flashall",
.cb = cb_flashall,
},
{
.cmd = "erase",
.cb = cb_erase,
},
{
.cmd = "devices",
.cb = cb_devices,
},
{
.cmd = "set_active",
.cb = cb_set_active,
},
{
.cmd = "oem add-staged-bootloader-file",
.cb = cb_staged_bootloader_file,
},
{
.cmd = "oem run-staged-efi",
.cb = cb_run_staged_efi,
},
{
.cmd = "oem",
.cb = cb_oem_cmd,
}
};
//cb for out_req->complete
static void rx_handler_command(struct usb_ep *ep, struct usb_request *req)
{
char *cmdbuf = req->buf;
void (*func_cb)(struct usb_ep *ep, struct usb_request *req) = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(cmd_dispatch_info); i++) {
if (!strcmp_l1(cmd_dispatch_info[i].cmd, cmdbuf)) {
func_cb = cmd_dispatch_info[i].cb;
break;
}
}
if (!func_cb) {
error("unknown command: %s\n", cmdbuf);
fastboot_tx_write_str("FAILunknown command");
} else {
if (req->actual < req->length) {
u8 *buf = (u8 *)req->buf;
buf[req->actual] = 0;
func_cb(ep, req);
} else {
error("buffer overflow\n");
fastboot_tx_write_str("FAILbuffer overflow");
}
}
if (req->status == 0 && !fastboot_is_busy()) {
*cmdbuf = '\0';
req->actual = 0;
usb_ep_queue(ep, req, 0);
}
}