|  | /* | 
|  | * (C) Copyright 2002 | 
|  | * David Mueller, ELSOFT AG, d.mueller@elsoft.ch | 
|  | * | 
|  | * See file CREDITS for list of people who contributed to this | 
|  | * project. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation; either version 2 of | 
|  | * the License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | 
|  | * MA 02111-1307 USA | 
|  | */ | 
|  |  | 
|  | /* This code should work for both the S3C2400 and the S3C2410 | 
|  | * as they seem to have the same I2C controller inside. | 
|  | * The different address mapping is handled by the s3c24xx.h files below. | 
|  | */ | 
|  |  | 
|  | #include <common.h> | 
|  |  | 
|  | #ifdef CONFIG_DRIVER_S3C24X0_I2C | 
|  |  | 
|  | #if defined(CONFIG_S3C2400) | 
|  | #include <s3c2400.h> | 
|  | #elif defined(CONFIG_S3C2410) | 
|  | #include <s3c2410.h> | 
|  | #endif | 
|  | #include <i2c.h> | 
|  |  | 
|  | #ifdef CONFIG_HARD_I2C | 
|  |  | 
|  | #define	I2C_WRITE	0 | 
|  | #define I2C_READ	1 | 
|  |  | 
|  | #define I2C_OK		0 | 
|  | #define I2C_NOK		1 | 
|  | #define I2C_NACK	2 | 
|  | #define I2C_NOK_LA	3		/* Lost arbitration */ | 
|  | #define I2C_NOK_TOUT	4		/* time out */ | 
|  |  | 
|  | #define I2CSTAT_BSY	0x20		/* Busy bit */ | 
|  | #define I2CSTAT_NACK	0x01		/* Nack bit */ | 
|  | #define I2CCON_IRPND	0x10		/* Interrupt pending bit */ | 
|  | #define I2C_MODE_MT	0xC0		/* Master Transmit Mode */ | 
|  | #define I2C_MODE_MR	0x80		/* Master Receive Mode */ | 
|  | #define I2C_START_STOP	0x20		/* START / STOP */ | 
|  | #define I2C_TXRX_ENA	0x10		/* I2C Tx/Rx enable */ | 
|  |  | 
|  | #define I2C_TIMEOUT 1			/* 1 second */ | 
|  |  | 
|  |  | 
|  | static int GetI2CSDA(void) | 
|  | { | 
|  | S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); | 
|  |  | 
|  | #ifdef CONFIG_S3C2410 | 
|  | return (gpio->GPEDAT & 0x8000) >> 15; | 
|  | #endif | 
|  | #ifdef CONFIG_S3C2400 | 
|  | return (gpio->PGDAT & 0x0020) >> 5; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static void SetI2CSDA(int x) | 
|  | { | 
|  | rGPEDAT = (rGPEDAT & ~0x8000) | (x&1) << 15; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void SetI2CSCL(int x) | 
|  | { | 
|  | S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); | 
|  |  | 
|  | #ifdef CONFIG_S3C2410 | 
|  | gpio->GPEDAT = (gpio->GPEDAT & ~0x4000) | (x&1) << 14; | 
|  | #endif | 
|  | #ifdef CONFIG_S3C2400 | 
|  | gpio->PGDAT = (gpio->PGDAT & ~0x0040) | (x&1) << 6; | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | static int WaitForXfer (void) | 
|  | { | 
|  | S3C24X0_I2C *const i2c = S3C24X0_GetBase_I2C (); | 
|  | int i, status; | 
|  |  | 
|  | i = I2C_TIMEOUT * 10000; | 
|  | status = i2c->IICCON; | 
|  | while ((i > 0) && !(status & I2CCON_IRPND)) { | 
|  | udelay (100); | 
|  | status = i2c->IICCON; | 
|  | i--; | 
|  | } | 
|  |  | 
|  | return (status & I2CCON_IRPND) ? I2C_OK : I2C_NOK_TOUT; | 
|  | } | 
|  |  | 
|  | static int IsACK (void) | 
|  | { | 
|  | S3C24X0_I2C *const i2c = S3C24X0_GetBase_I2C (); | 
|  |  | 
|  | return (!(i2c->IICSTAT & I2CSTAT_NACK)); | 
|  | } | 
|  |  | 
|  | static void ReadWriteByte (void) | 
|  | { | 
|  | S3C24X0_I2C *const i2c = S3C24X0_GetBase_I2C (); | 
|  |  | 
|  | i2c->IICCON &= ~I2CCON_IRPND; | 
|  | } | 
|  |  | 
|  | void i2c_init (int speed, int slaveadd) | 
|  | { | 
|  | S3C24X0_I2C *const i2c = S3C24X0_GetBase_I2C (); | 
|  | S3C24X0_GPIO *const gpio = S3C24X0_GetBase_GPIO (); | 
|  | ulong freq, pres = 16, div; | 
|  | int i, status; | 
|  |  | 
|  | /* wait for some time to give previous transfer a chance to finish */ | 
|  |  | 
|  | i = I2C_TIMEOUT * 1000; | 
|  | status = i2c->IICSTAT; | 
|  | while ((i > 0) && (status & I2CSTAT_BSY)) { | 
|  | udelay (1000); | 
|  | status = i2c->IICSTAT; | 
|  | i--; | 
|  | } | 
|  |  | 
|  | if ((status & I2CSTAT_BSY) || GetI2CSDA () == 0) { | 
|  | #ifdef CONFIG_S3C2410 | 
|  | ulong old_gpecon = gpio->GPECON; | 
|  | #endif | 
|  | #ifdef CONFIG_S3C2400 | 
|  | ulong old_gpecon = gpio->PGCON; | 
|  | #endif | 
|  | /* bus still busy probably by (most) previously interrupted transfer */ | 
|  |  | 
|  | #ifdef CONFIG_S3C2410 | 
|  | /* set I2CSDA and I2CSCL (GPE15, GPE14) to GPIO */ | 
|  | gpio->GPECON = (gpio->GPECON & ~0xF0000000) | 0x10000000; | 
|  | #endif | 
|  | #ifdef CONFIG_S3C2400 | 
|  | /* set I2CSDA and I2CSCL (PG5, PG6) to GPIO */ | 
|  | gpio->PGCON = (gpio->PGCON & ~0x00003c00) | 0x00001000; | 
|  | #endif | 
|  |  | 
|  | /* toggle I2CSCL until bus idle */ | 
|  | SetI2CSCL (0); | 
|  | udelay (1000); | 
|  | i = 10; | 
|  | while ((i > 0) && (GetI2CSDA () != 1)) { | 
|  | SetI2CSCL (1); | 
|  | udelay (1000); | 
|  | SetI2CSCL (0); | 
|  | udelay (1000); | 
|  | i--; | 
|  | } | 
|  | SetI2CSCL (1); | 
|  | udelay (1000); | 
|  |  | 
|  | /* restore pin functions */ | 
|  | #ifdef CONFIG_S3C2410 | 
|  | gpio->GPECON = old_gpecon; | 
|  | #endif | 
|  | #ifdef CONFIG_S3C2400 | 
|  | gpio->PGCON = old_gpecon; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* calculate prescaler and divisor values */ | 
|  | freq = get_PCLK (); | 
|  | if ((freq / pres / (16 + 1)) > speed) | 
|  | /* set prescaler to 512 */ | 
|  | pres = 512; | 
|  |  | 
|  | div = 0; | 
|  | while ((freq / pres / (div + 1)) > speed) | 
|  | div++; | 
|  |  | 
|  | /* set prescaler, divisor according to freq, also set | 
|  | * ACKGEN, IRQ */ | 
|  | i2c->IICCON = (div & 0x0F) | 0xA0 | ((pres == 512) ? 0x40 : 0); | 
|  |  | 
|  | /* init to SLAVE REVEIVE and set slaveaddr */ | 
|  | i2c->IICSTAT = 0; | 
|  | i2c->IICADD = slaveadd; | 
|  | /* program Master Transmit (and implicit STOP) */ | 
|  | i2c->IICSTAT = I2C_MODE_MT | I2C_TXRX_ENA; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cmd_type is 0 for write, 1 for read. | 
|  | * | 
|  | * addr_len can take any value from 0-255, it is only limited | 
|  | * by the char, we could make it larger if needed. If it is | 
|  | * 0 we skip the address write cycle. | 
|  | */ | 
|  | static | 
|  | int i2c_transfer (unsigned char cmd_type, | 
|  | unsigned char chip, | 
|  | unsigned char addr[], | 
|  | unsigned char addr_len, | 
|  | unsigned char data[], unsigned short data_len) | 
|  | { | 
|  | S3C24X0_I2C *const i2c = S3C24X0_GetBase_I2C (); | 
|  | int i, status, result; | 
|  |  | 
|  | if (data == 0 || data_len == 0) { | 
|  | /*Don't support data transfer of no length or to address 0 */ | 
|  | printf ("i2c_transfer: bad call\n"); | 
|  | return I2C_NOK; | 
|  | } | 
|  |  | 
|  | /* Check I2C bus idle */ | 
|  | i = I2C_TIMEOUT * 1000; | 
|  | status = i2c->IICSTAT; | 
|  | while ((i > 0) && (status & I2CSTAT_BSY)) { | 
|  | udelay (1000); | 
|  | status = i2c->IICSTAT; | 
|  | i--; | 
|  | } | 
|  |  | 
|  | if (status & I2CSTAT_BSY) | 
|  | return I2C_NOK_TOUT; | 
|  |  | 
|  | i2c->IICCON |= 0x80; | 
|  | result = I2C_OK; | 
|  |  | 
|  | switch (cmd_type) { | 
|  | case I2C_WRITE: | 
|  | if (addr && addr_len) { | 
|  | i2c->IICDS = chip; | 
|  | /* send START */ | 
|  | i2c->IICSTAT = I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP; | 
|  | i = 0; | 
|  | while ((i < addr_len) && (result == I2C_OK)) { | 
|  | result = WaitForXfer (); | 
|  | i2c->IICDS = addr[i]; | 
|  | ReadWriteByte (); | 
|  | i++; | 
|  | } | 
|  | i = 0; | 
|  | while ((i < data_len) && (result == I2C_OK)) { | 
|  | result = WaitForXfer (); | 
|  | i2c->IICDS = data[i]; | 
|  | ReadWriteByte (); | 
|  | i++; | 
|  | } | 
|  | } else { | 
|  | i2c->IICDS = chip; | 
|  | /* send START */ | 
|  | i2c->IICSTAT = I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP; | 
|  | i = 0; | 
|  | while ((i < data_len) && (result = I2C_OK)) { | 
|  | result = WaitForXfer (); | 
|  | i2c->IICDS = data[i]; | 
|  | ReadWriteByte (); | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (result == I2C_OK) | 
|  | result = WaitForXfer (); | 
|  |  | 
|  | /* send STOP */ | 
|  | i2c->IICSTAT = I2C_MODE_MR | I2C_TXRX_ENA; | 
|  | ReadWriteByte (); | 
|  | break; | 
|  |  | 
|  | case I2C_READ: | 
|  | if (addr && addr_len) { | 
|  | i2c->IICSTAT = I2C_MODE_MT | I2C_TXRX_ENA; | 
|  | i2c->IICDS = chip; | 
|  | /* send START */ | 
|  | i2c->IICSTAT |= I2C_START_STOP; | 
|  | result = WaitForXfer (); | 
|  | if (IsACK ()) { | 
|  | i = 0; | 
|  | while ((i < addr_len) && (result == I2C_OK)) { | 
|  | i2c->IICDS = addr[i]; | 
|  | ReadWriteByte (); | 
|  | result = WaitForXfer (); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | i2c->IICDS = chip; | 
|  | /* resend START */ | 
|  | i2c->IICSTAT =  I2C_MODE_MR | I2C_TXRX_ENA | | 
|  | I2C_START_STOP; | 
|  | ReadWriteByte (); | 
|  | result = WaitForXfer (); | 
|  | i = 0; | 
|  | while ((i < data_len) && (result == I2C_OK)) { | 
|  | /* disable ACK for final READ */ | 
|  | if (i == data_len - 1) | 
|  | i2c->IICCON &= ~0x80; | 
|  | ReadWriteByte (); | 
|  | result = WaitForXfer (); | 
|  | data[i] = i2c->IICDS; | 
|  | i++; | 
|  | } | 
|  | } else { | 
|  | result = I2C_NACK; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | i2c->IICSTAT = I2C_MODE_MR | I2C_TXRX_ENA; | 
|  | i2c->IICDS = chip; | 
|  | /* send START */ | 
|  | i2c->IICSTAT |= I2C_START_STOP; | 
|  | result = WaitForXfer (); | 
|  |  | 
|  | if (IsACK ()) { | 
|  | i = 0; | 
|  | while ((i < data_len) && (result == I2C_OK)) { | 
|  | /* disable ACK for final READ */ | 
|  | if (i == data_len - 1) | 
|  | i2c->IICCON &= ~0x80; | 
|  | ReadWriteByte (); | 
|  | result = WaitForXfer (); | 
|  | data[i] = i2c->IICDS; | 
|  | i++; | 
|  | } | 
|  | } else { | 
|  | result = I2C_NACK; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* send STOP */ | 
|  | i2c->IICSTAT = I2C_MODE_MR | I2C_TXRX_ENA; | 
|  | ReadWriteByte (); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printf ("i2c_transfer: bad call\n"); | 
|  | result = I2C_NOK; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return (result); | 
|  | } | 
|  |  | 
|  | int i2c_probe (uchar chip) | 
|  | { | 
|  | uchar buf[1]; | 
|  |  | 
|  | buf[0] = 0; | 
|  |  | 
|  | /* | 
|  | * What is needed is to send the chip address and verify that the | 
|  | * address was <ACK>ed (i.e. there was a chip at that address which | 
|  | * drove the data line low). | 
|  | */ | 
|  | return (i2c_transfer (I2C_READ, chip << 1, 0, 0, buf, 1) != I2C_OK); | 
|  | } | 
|  |  | 
|  | int i2c_read (uchar chip, uint addr, int alen, uchar * buffer, int len) | 
|  | { | 
|  | uchar xaddr[4]; | 
|  | int ret; | 
|  |  | 
|  | if (alen > 4) { | 
|  | printf ("I2C read: addr len %d not supported\n", alen); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (alen > 0) { | 
|  | xaddr[0] = (addr >> 24) & 0xFF; | 
|  | xaddr[1] = (addr >> 16) & 0xFF; | 
|  | xaddr[2] = (addr >> 8) & 0xFF; | 
|  | xaddr[3] = addr & 0xFF; | 
|  | } | 
|  |  | 
|  | #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW | 
|  | /* | 
|  | * EEPROM chips that implement "address overflow" are ones | 
|  | * like Catalyst 24WC04/08/16 which has 9/10/11 bits of | 
|  | * address and the extra bits end up in the "chip address" | 
|  | * bit slots. This makes a 24WC08 (1Kbyte) chip look like | 
|  | * four 256 byte chips. | 
|  | * | 
|  | * Note that we consider the length of the address field to | 
|  | * still be one byte because the extra address bits are | 
|  | * hidden in the chip address. | 
|  | */ | 
|  | if (alen > 0) | 
|  | chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW); | 
|  | #endif | 
|  | if ((ret = | 
|  | i2c_transfer (I2C_READ, chip << 1, &xaddr[4 - alen], alen, | 
|  | buffer, len)) != 0) { | 
|  | printf ("I2c read: failed %d\n", ret); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int i2c_write (uchar chip, uint addr, int alen, uchar * buffer, int len) | 
|  | { | 
|  | uchar xaddr[4]; | 
|  |  | 
|  | if (alen > 4) { | 
|  | printf ("I2C write: addr len %d not supported\n", alen); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (alen > 0) { | 
|  | xaddr[0] = (addr >> 24) & 0xFF; | 
|  | xaddr[1] = (addr >> 16) & 0xFF; | 
|  | xaddr[2] = (addr >> 8) & 0xFF; | 
|  | xaddr[3] = addr & 0xFF; | 
|  | } | 
|  | #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW | 
|  | /* | 
|  | * EEPROM chips that implement "address overflow" are ones | 
|  | * like Catalyst 24WC04/08/16 which has 9/10/11 bits of | 
|  | * address and the extra bits end up in the "chip address" | 
|  | * bit slots. This makes a 24WC08 (1Kbyte) chip look like | 
|  | * four 256 byte chips. | 
|  | * | 
|  | * Note that we consider the length of the address field to | 
|  | * still be one byte because the extra address bits are | 
|  | * hidden in the chip address. | 
|  | */ | 
|  | if (alen > 0) | 
|  | chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW); | 
|  | #endif | 
|  | return (i2c_transfer | 
|  | (I2C_WRITE, chip << 1, &xaddr[4 - alen], alen, buffer, | 
|  | len) != 0); | 
|  | } | 
|  | #endif	/* CONFIG_HARD_I2C */ | 
|  |  | 
|  | #endif /* CONFIG_DRIVER_S3C24X0_I2C */ |