blob: b168b247bd17cd4c8b728775af1058a3687240c1 [file] [log] [blame] [edit]
/*
* (C) Copyright 2008
* Matthias Fuchs, esd gmbh, matthias.fuchs@esd-electronics.com
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/bitops.h>
#include <command.h>
#include <i2c.h>
#include <asm/ppc440.h>
#include "du440.h"
DECLARE_GLOBAL_DATA_PTR;
extern flash_info_t flash_info[CONFIG_SYS_MAX_FLASH_BANKS];
extern ulong flash_get_size (ulong base, int banknum);
int usbhub_init(void);
int dvi_init(void);
int eeprom_write_enable (unsigned dev_addr, int state);
int board_revision(void);
static int du440_post_errors;
int board_early_init_f(void)
{
u32 sdr0_cust0;
u32 sdr0_pfc1, sdr0_pfc2;
u32 reg;
mtdcr(EBC0_CFGADDR, EBC0_CFG);
mtdcr(EBC0_CFGDATA, 0xb8400000);
/*
* Setup the GPIO pins
*/
out_be32((void*)GPIO0_OR, 0x00000000 | CONFIG_SYS_GPIO0_EP_EEP);
out_be32((void*)GPIO0_TCR, 0x0000001f | CONFIG_SYS_GPIO0_EP_EEP);
out_be32((void*)GPIO0_OSRL, 0x50055400);
out_be32((void*)GPIO0_OSRH, 0x55005000);
out_be32((void*)GPIO0_TSRL, 0x50055400);
out_be32((void*)GPIO0_TSRH, 0x55005000);
out_be32((void*)GPIO0_ISR1L, 0x50000000);
out_be32((void*)GPIO0_ISR1H, 0x00000000);
out_be32((void*)GPIO0_ISR2L, 0x00000000);
out_be32((void*)GPIO0_ISR2H, 0x00000000);
out_be32((void*)GPIO0_ISR3L, 0x00000000);
out_be32((void*)GPIO0_ISR3H, 0x00000000);
out_be32((void*)GPIO1_OR, 0x00000000);
out_be32((void*)GPIO1_TCR, 0xc2000000 |
CONFIG_SYS_GPIO1_IORSTN |
CONFIG_SYS_GPIO1_IORST2N |
CONFIG_SYS_GPIO1_LEDUSR1 |
CONFIG_SYS_GPIO1_LEDUSR2 |
CONFIG_SYS_GPIO1_LEDPOST |
CONFIG_SYS_GPIO1_LEDDU);
out_be32((void*)GPIO1_ODR, CONFIG_SYS_GPIO1_LEDDU);
out_be32((void*)GPIO1_OSRL, 0x0c280000);
out_be32((void*)GPIO1_OSRH, 0x00000000);
out_be32((void*)GPIO1_TSRL, 0xcc000000);
out_be32((void*)GPIO1_TSRH, 0x00000000);
out_be32((void*)GPIO1_ISR1L, 0x00005550);
out_be32((void*)GPIO1_ISR1H, 0x00000000);
out_be32((void*)GPIO1_ISR2L, 0x00050000);
out_be32((void*)GPIO1_ISR2H, 0x00000000);
out_be32((void*)GPIO1_ISR3L, 0x01400000);
out_be32((void*)GPIO1_ISR3H, 0x00000000);
/*
* Setup the interrupt controller polarities, triggers, etc.
*/
mtdcr(UIC0SR, 0xffffffff); /* clear all */
mtdcr(UIC0ER, 0x00000000); /* disable all */
mtdcr(UIC0CR, 0x00000005); /* ATI & UIC1 crit are critical */
mtdcr(UIC0PR, 0xfffff7ff); /* per ref-board manual */
mtdcr(UIC0TR, 0x00000000); /* per ref-board manual */
mtdcr(UIC0VR, 0x00000000); /* int31 highest, base=0x000 */
mtdcr(UIC0SR, 0xffffffff); /* clear all */
/*
* UIC1:
* bit30: ext. Irq 1: PLD : int 32+30
*/
mtdcr(UIC1SR, 0xffffffff); /* clear all */
mtdcr(UIC1ER, 0x00000000); /* disable all */
mtdcr(UIC1CR, 0x00000000); /* all non-critical */
mtdcr(UIC1PR, 0xfffffffd);
mtdcr(UIC1TR, 0x00000000);
mtdcr(UIC1VR, 0x00000000); /* int31 highest, base=0x000 */
mtdcr(UIC1SR, 0xffffffff); /* clear all */
/*
* UIC2
* bit3: ext. Irq 2: DCF77 : int 64+3
*/
mtdcr(UIC2SR, 0xffffffff); /* clear all */
mtdcr(UIC2ER, 0x00000000); /* disable all */
mtdcr(UIC2CR, 0x00000000); /* all non-critical */
mtdcr(UIC2PR, 0xffffffff); /* per ref-board manual */
mtdcr(UIC2TR, 0x00000000); /* per ref-board manual */
mtdcr(UIC2VR, 0x00000000); /* int31 highest, base=0x000 */
mtdcr(UIC2SR, 0xffffffff); /* clear all */
/* select Ethernet pins */
mfsdr(SDR0_PFC1, sdr0_pfc1);
mfsdr(SDR0_PFC2, sdr0_pfc2);
/* setup EMAC bridge interface */
if (board_revision() == 0) {
/* 1 x MII */
sdr0_pfc1 = (sdr0_pfc1 & ~SDR0_PFC1_SELECT_MASK) |
SDR0_PFC1_SELECT_CONFIG_1_2;
sdr0_pfc2 = (sdr0_pfc2 & ~SDR0_PFC2_SELECT_MASK) |
SDR0_PFC2_SELECT_CONFIG_1_2;
} else {
/* 2 x SMII */
sdr0_pfc1 = (sdr0_pfc1 & ~SDR0_PFC1_SELECT_MASK) |
SDR0_PFC1_SELECT_CONFIG_6;
sdr0_pfc2 = (sdr0_pfc2 & ~SDR0_PFC2_SELECT_MASK) |
SDR0_PFC2_SELECT_CONFIG_6;
}
/* enable 2nd IIC */
sdr0_pfc1 = (sdr0_pfc1 & ~SDR0_PFC1_SIS_MASK) | SDR0_PFC1_SIS_IIC1_SEL;
mtsdr(SDR0_PFC2, sdr0_pfc2);
mtsdr(SDR0_PFC1, sdr0_pfc1);
/* PCI arbiter enabled */
mfsdr(SDR0_PCI0, reg);
mtsdr(SDR0_PCI0, 0x80000000 | reg);
/* setup NAND FLASH */
mfsdr(SDR0_CUST0, sdr0_cust0);
sdr0_cust0 = SDR0_CUST0_MUX_NDFC_SEL |
SDR0_CUST0_NDFC_ENABLE |
SDR0_CUST0_NDFC_BW_8_BIT |
SDR0_CUST0_NDFC_ARE_MASK |
(0x80000000 >> (28 + CONFIG_SYS_NAND0_CS)) |
(0x80000000 >> (28 + CONFIG_SYS_NAND1_CS));
mtsdr(SDR0_CUST0, sdr0_cust0);
return 0;
}
int misc_init_r(void)
{
uint pbcr;
int size_val = 0;
u32 reg;
unsigned long usb2d0cr = 0;
unsigned long usb2phy0cr, usb2h0cr = 0;
unsigned long sdr0_pfc1;
unsigned long sdr0_srst0, sdr0_srst1;
int i, j;
/* adjust flash start and offset */
gd->bd->bi_flashstart = 0 - gd->bd->bi_flashsize;
gd->bd->bi_flashoffset = 0;
mtdcr(EBC0_CFGADDR, PB0CR);
pbcr = mfdcr(EBC0_CFGDATA);
size_val = ffs(gd->bd->bi_flashsize) - 21;
pbcr = (pbcr & 0x0001ffff) | gd->bd->bi_flashstart | (size_val << 17);
mtdcr(EBC0_CFGADDR, PB0CR);
mtdcr(EBC0_CFGDATA, pbcr);
/*
* Re-check to get correct base address
*/
flash_get_size(gd->bd->bi_flashstart, 0);
/*
* USB suff...
*/
/* SDR Setting */
mfsdr(SDR0_PFC1, sdr0_pfc1);
mfsdr(SDR0_USB0, usb2d0cr);
mfsdr(SDR0_USB2PHY0CR, usb2phy0cr);
mfsdr(SDR0_USB2H0CR, usb2h0cr);
usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_XOCLK_MASK;
usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_XOCLK_EXTERNAL;
usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_WDINT_MASK;
usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_WDINT_16BIT_30MHZ;
usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_DVBUS_MASK;
usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_DVBUS_PURDIS;
usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_DWNSTR_MASK;
usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_DWNSTR_HOST;
usb2phy0cr = usb2phy0cr &~SDR0_USB2PHY0CR_UTMICN_MASK;
usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_UTMICN_HOST;
/* An 8-bit/60MHz interface is the only possible alternative
when connecting the Device to the PHY */
usb2h0cr = usb2h0cr &~SDR0_USB2H0CR_WDINT_MASK;
usb2h0cr = usb2h0cr | SDR0_USB2H0CR_WDINT_16BIT_30MHZ;
/* To enable the USB 2.0 Device function through the UTMI interface */
usb2d0cr = usb2d0cr &~SDR0_USB2D0CR_USB2DEV_EBC_SEL_MASK;
sdr0_pfc1 = sdr0_pfc1 &~SDR0_PFC1_UES_MASK;
sdr0_pfc1 = sdr0_pfc1 | SDR0_PFC1_UES_EBCHR_SEL;
mtsdr(SDR0_PFC1, sdr0_pfc1);
mtsdr(SDR0_USB0, usb2d0cr);
mtsdr(SDR0_USB2PHY0CR, usb2phy0cr);
mtsdr(SDR0_USB2H0CR, usb2h0cr);
/*
* Take USB out of reset:
* -Initial status = all cores are in reset
* -deassert reset to OPB1, P4OPB0, OPB2, PLB42OPB1 OPB2PLB40 cores
* -wait 1 ms
* -deassert reset to PHY
* -wait 1 ms
* -deassert reset to HOST
* -wait 4 ms
* -deassert all other resets
*/
mfsdr(SDR0_SRST1, sdr0_srst1);
sdr0_srst1 &= ~(SDR0_SRST1_OPBA1 | \
SDR0_SRST1_P4OPB0 | \
SDR0_SRST1_OPBA2 | \
SDR0_SRST1_PLB42OPB1 | \
SDR0_SRST1_OPB2PLB40);
mtsdr(SDR0_SRST1, sdr0_srst1);
udelay(1000);
mfsdr(SDR0_SRST1, sdr0_srst1);
sdr0_srst1 &= ~SDR0_SRST1_USB20PHY;
mtsdr(SDR0_SRST1, sdr0_srst1);
udelay(1000);
mfsdr(SDR0_SRST0, sdr0_srst0);
sdr0_srst0 &= ~SDR0_SRST0_USB2H;
mtsdr(SDR0_SRST0, sdr0_srst0);
udelay(4000);
/* finally all the other resets */
mtsdr(SDR0_SRST1, 0x00000000);
mtsdr(SDR0_SRST0, 0x00000000);
printf("USB: Host(int phy)\n");
/*
* Clear PLB4A0_ACR[WRP]
* This fix will make the MAL burst disabling patch for the Linux
* EMAC driver obsolete.
*/
reg = mfdcr(PLB4A0_ACR) & ~PLB4Ax_ACR_WRP_MASK;
mtdcr(PLB4A0_ACR, reg);
/*
* release IO-RST#
* We have to wait at least 560ms until we may call usbhub_init
*/
out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) |
CONFIG_SYS_GPIO1_IORSTN | CONFIG_SYS_GPIO1_IORST2N);
/*
* flash USR1/2 LEDs (600ms)
* This results in the necessary delay from IORST# until
* calling usbhub_init will succeed
*/
for (j = 0; j < 3; j++) {
out_be32((void*)GPIO1_OR,
(in_be32((void*)GPIO1_OR) & ~CONFIG_SYS_GPIO1_LEDUSR2) |
CONFIG_SYS_GPIO1_LEDUSR1);
for (i = 0; i < 100; i++)
udelay(1000);
out_be32((void*)GPIO1_OR,
(in_be32((void*)GPIO1_OR) & ~CONFIG_SYS_GPIO1_LEDUSR1) |
CONFIG_SYS_GPIO1_LEDUSR2);
for (i = 0; i < 100; i++)
udelay(1000);
}
out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) &
~(CONFIG_SYS_GPIO1_LEDUSR1 | CONFIG_SYS_GPIO1_LEDUSR2));
if (usbhub_init())
du440_post_errors++;
if (dvi_init())
du440_post_errors++;
return 0;
}
int pld_revision(void)
{
out_8((void *)CONFIG_SYS_CPLD_BASE, 0x00);
return (int)(in_8((void *)CONFIG_SYS_CPLD_BASE) & CPLD_VERSION_MASK);
}
int board_revision(void)
{
int rpins = (int)((in_be32((void*)GPIO1_IR) & CONFIG_SYS_GPIO1_HWVER_MASK)
>> CONFIG_SYS_GPIO1_HWVER_SHIFT);
return ((rpins & 1) << 3) | ((rpins & 2) << 1) |
((rpins & 4) >> 1) | ((rpins & 8) >> 3);
}
#if defined(CONFIG_SHOW_ACTIVITY)
void board_show_activity (ulong timestamp)
{
if ((timestamp % 100) == 0)
out_be32((void*)GPIO1_OR,
in_be32((void*)GPIO1_OR) ^ CONFIG_SYS_GPIO1_LEDUSR1);
}
void show_activity(int arg)
{
}
#endif /* CONFIG_SHOW_ACTIVITY */
int du440_phy_addr(int devnum)
{
if (board_revision() == 0)
return devnum;
return devnum + 1;
}
int checkboard(void)
{
char serno[32];
puts("Board: DU440");
if (getenv_f("serial#", serno, sizeof(serno)) > 0) {
puts(", serial# ");
puts(serno);
}
printf(", HW-Rev. 1.%d, CPLD-Rev. 1.%d\n",
board_revision(), pld_revision());
return (0);
}
int last_stage_init(void)
{
int e, i;
/* everyting is ok: turn on POST-LED */
out_be32((void*)GPIO1_OR, in_be32((void*)GPIO1_OR) | CONFIG_SYS_GPIO1_LEDPOST);
/* slowly blink on errors and finally keep LED off */
for (e = 0; e < du440_post_errors; e++) {
out_be32((void*)GPIO1_OR,
in_be32((void*)GPIO1_OR) | CONFIG_SYS_GPIO1_LEDPOST);
for (i = 0; i < 500; i++)
udelay(1000);
out_be32((void*)GPIO1_OR,
in_be32((void*)GPIO1_OR) & ~CONFIG_SYS_GPIO1_LEDPOST);
for (i = 0; i < 500; i++)
udelay(1000);
}
return 0;
}
/*
* read field strength from I2C ADC
*/
int dcf77_status(void)
{
unsigned int oldbus;
uchar u[2];
int mv;
oldbus = I2C_GET_BUS();
I2C_SET_BUS(1);
if (i2c_read (IIC1_MCP3021_ADDR, 0, 0, u, 2)) {
I2C_SET_BUS(oldbus);
return -1;
}
mv = (int)(((u[0] << 8) | u[1]) >> 2) * 3300 / 1024;
I2C_SET_BUS(oldbus);
return mv;
}
int do_dcf77(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
int mv;
u32 pin, pinold;
unsigned long long t1, t2;
bd_t *bd = gd->bd;
printf("DCF77: ");
mv = dcf77_status();
if (mv > 0)
printf("signal=%d mV\n", mv);
else
printf("ERROR - no signal\n");
t1 = t2 = 0;
pinold = in_be32((void*)GPIO1_IR) & CONFIG_SYS_GPIO1_DCF77;
while (!ctrlc()) {
pin = in_be32((void*)GPIO1_IR) & CONFIG_SYS_GPIO1_DCF77;
if (pin && !pinold) { /* bit start */
t1 = get_ticks();
if (t2 && ((unsigned int)(t1 - t2) /
(bd->bi_procfreq / 1000) >= 1800))
printf("Start of minute\n");
t2 = t1;
}
if (t1 && !pin && pinold) { /* bit end */
printf("%5d\n", (unsigned int)(get_ticks() - t1) /
(bd->bi_procfreq / 1000));
}
pinold = pin;
}
printf("Abort\n");
return 0;
}
U_BOOT_CMD(
dcf77, 1, 1, do_dcf77,
"Check DCF77 receiver",
""
);
/*
* initialize USB hub via I2C1
*/
int usbhub_init(void)
{
int reg;
int ret = 0;
unsigned int oldbus;
uchar u[] = {0x04, 0x24, 0x04, 0x07, 0x25, 0x00, 0x00, 0xd3,
0x18, 0xe0, 0x00, 0x00, 0x01, 0x64, 0x01, 0x64,
0x32};
uchar stcd;
printf("Hub: ");
oldbus = I2C_GET_BUS();
I2C_SET_BUS(1);
for (reg = 0; reg < sizeof(u); reg++)
if (i2c_write (IIC1_USB2507_ADDR, reg, 1, &u[reg], 1)) {
ret = -1;
break;
}
if (ret == 0) {
stcd = 0x03;
if (i2c_write (IIC1_USB2507_ADDR, 0, 1, &stcd, 1))
ret = -1;
}
if (ret == 0)
printf("initialized\n");
else
printf("failed - cannot initialize USB hub\n");
I2C_SET_BUS(oldbus);
return ret;
}
int do_hubinit(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
usbhub_init();
return 0;
}
U_BOOT_CMD(
hubinit, 1, 1, do_hubinit,
"Initialize USB hub",
""
);
#define CONFIG_SYS_BOOT_EEPROM_PAGE_WRITE_BITS 3
int boot_eeprom_write (unsigned dev_addr,
unsigned offset,
uchar *buffer,
unsigned cnt)
{
unsigned end = offset + cnt;
unsigned blk_off;
int rcode = 0;
#if defined(CONFIG_SYS_EEPROM_WREN)
eeprom_write_enable(dev_addr, 1);
#endif
/*
* Write data until done or would cross a write page boundary.
* We must write the address again when changing pages
* because the address counter only increments within a page.
*/
while (offset < end) {
unsigned alen, len;
unsigned maxlen;
uchar addr[2];
blk_off = offset & 0xFF; /* block offset */
addr[0] = offset >> 8; /* block number */
addr[1] = blk_off; /* block offset */
alen = 2;
addr[0] |= dev_addr; /* insert device address */
len = end - offset;
/*
* For a FRAM device there is no limit on the number of the
* bytes that can be ccessed with the single read or write
* operation.
*/
#if defined(CONFIG_SYS_BOOT_EEPROM_PAGE_WRITE_BITS)
#define BOOT_EEPROM_PAGE_SIZE (1 << CONFIG_SYS_BOOT_EEPROM_PAGE_WRITE_BITS)
#define BOOT_EEPROM_PAGE_OFFSET(x) ((x) & (BOOT_EEPROM_PAGE_SIZE - 1))
maxlen = BOOT_EEPROM_PAGE_SIZE -
BOOT_EEPROM_PAGE_OFFSET(blk_off);
#else
maxlen = 0x100 - blk_off;
#endif
if (maxlen > I2C_RXTX_LEN)
maxlen = I2C_RXTX_LEN;
if (len > maxlen)
len = maxlen;
if (i2c_write (addr[0], offset, alen - 1, buffer, len) != 0)
rcode = 1;
buffer += len;
offset += len;
#if defined(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS)
udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
#endif
}
#if defined(CONFIG_SYS_EEPROM_WREN)
eeprom_write_enable(dev_addr, 0);
#endif
return rcode;
}
int do_setup_boot_eeprom(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
ulong sdsdp[4];
if (argc > 1) {
if (!strcmp(argv[1], "533")) {
printf("Bootstrapping for 533MHz\n");
sdsdp[0] = 0x87788252;
/* PLB-PCI-divider = 3 : sync PCI clock=44MHz */
sdsdp[1] = 0x095fa030;
sdsdp[2] = 0x40082350;
sdsdp[3] = 0x0d050000;
} else if (!strcmp(argv[1], "533-66")) {
printf("Bootstrapping for 533MHz (66MHz PCI)\n");
sdsdp[0] = 0x87788252;
/* PLB-PCI-divider = 2 : sync PCI clock=66MHz */
sdsdp[1] = 0x0957a030;
sdsdp[2] = 0x40082350;
sdsdp[3] = 0x0d050000;
} else if (!strcmp(argv[1], "667")) {
printf("Bootstrapping for 667MHz\n");
sdsdp[0] = 0x8778a256;
/* PLB-PCI-divider = 4 : sync PCI clock=33MHz */
sdsdp[1] = 0x0947a030;
/* PLB-PCI-divider = 3 : sync PCI clock=44MHz
* -> not working when overclocking 533MHz chips
* -> untested on 667MHz chips */
/* sdsdp[1]=0x095fa030; */
sdsdp[2] = 0x40082350;
sdsdp[3] = 0x0d050000;
} else if (!strcmp(argv[1], "667-166")) {
printf("Bootstrapping for 667-166MHz\n");
sdsdp[0] = 0x8778a252;
sdsdp[1] = 0x09d7a030;
sdsdp[2] = 0x40082350;
sdsdp[3] = 0x0d050000;
}
} else {
printf("Bootstrapping for 533MHz (default)\n");
sdsdp[0] = 0x87788252;
/* PLB-PCI-divider = 3 : sync PCI clock=44MHz */
sdsdp[1] = 0x095fa030;
sdsdp[2] = 0x40082350;
sdsdp[3] = 0x0d050000;
}
printf("Writing boot EEPROM ...\n");
if (boot_eeprom_write(CONFIG_SYS_I2C_BOOT_EEPROM_ADDR,
0, (uchar*)sdsdp, 16) != 0)
printf("boot_eeprom_write failed\n");
else
printf("done (dump via 'i2c md 52 0.1 10')\n");
return 0;
}
U_BOOT_CMD(
sbe, 2, 0, do_setup_boot_eeprom,
"setup boot eeprom",
""
);
#if defined(CONFIG_SYS_EEPROM_WREN)
/*
* Input: <dev_addr> I2C address of EEPROM device to enable.
* <state> -1: deliver current state
* 0: disable write
* 1: enable write
* Returns: -1: wrong device address
* 0: dis-/en- able done
* 0/1: current state if <state> was -1.
*/
int eeprom_write_enable (unsigned dev_addr, int state)
{
if ((CONFIG_SYS_I2C_EEPROM_ADDR != dev_addr) &&
(CONFIG_SYS_I2C_BOOT_EEPROM_ADDR != dev_addr))
return -1;
else {
switch (state) {
case 1:
/* Enable write access, clear bit GPIO_SINT2. */
out_be32((void*)GPIO0_OR,
in_be32((void*)GPIO0_OR) & ~CONFIG_SYS_GPIO0_EP_EEP);
state = 0;
break;
case 0:
/* Disable write access, set bit GPIO_SINT2. */
out_be32((void*)GPIO0_OR,
in_be32((void*)GPIO0_OR) | CONFIG_SYS_GPIO0_EP_EEP);
state = 0;
break;
default:
/* Read current status back. */
state = (0 == (in_be32((void*)GPIO0_OR) &
CONFIG_SYS_GPIO0_EP_EEP));
break;
}
}
return state;
}
int do_eep_wren (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
int query = argc == 1;
int state = 0;
if (query) {
/* Query write access state. */
state = eeprom_write_enable(CONFIG_SYS_I2C_EEPROM_ADDR, -1);
if (state < 0)
puts ("Query of write access state failed.\n");
else {
printf ("Write access for device 0x%0x is %sabled.\n",
CONFIG_SYS_I2C_EEPROM_ADDR, state ? "en" : "dis");
state = 0;
}
} else {
if ('0' == argv[1][0]) {
/* Disable write access. */
state = eeprom_write_enable(CONFIG_SYS_I2C_EEPROM_ADDR, 0);
} else {
/* Enable write access. */
state = eeprom_write_enable(CONFIG_SYS_I2C_EEPROM_ADDR, 1);
}
if (state < 0)
puts ("Setup of write access state failed.\n");
}
return state;
}
U_BOOT_CMD(eepwren, 2, 0, do_eep_wren,
"Enable / disable / query EEPROM write access",
""
);
#endif /* #if defined(CONFIG_SYS_EEPROM_WREN) */
static int got_pldirq;
static int pld_interrupt(u32 arg)
{
int rc = -1; /* not for us */
u8 status = in_8((void *)CONFIG_SYS_CPLD_BASE);
/* check for PLD interrupt */
if (status & PWR_INT_FLAG) {
/* reset this int */
out_8((void *)CONFIG_SYS_CPLD_BASE, 0);
rc = 0;
got_pldirq = 1; /* trigger backend */
}
return rc;
}
int do_waitpwrirq(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
got_pldirq = 0;
/* clear any pending interrupt */
out_8((void *)CONFIG_SYS_CPLD_BASE, 0);
irq_install_handler(CPLD_IRQ,
(interrupt_handler_t *)pld_interrupt, 0);
printf("Waiting ...\n");
while(!got_pldirq) {
/* Abort if ctrl-c was pressed */
if (ctrlc()) {
puts("\nAbort\n");
break;
}
}
if (got_pldirq) {
printf("Got interrupt!\n");
printf("Power %sready!\n",
in_8((void *)CONFIG_SYS_CPLD_BASE) &
PWR_RDY ? "":"NOT ");
}
irq_free_handler(CPLD_IRQ);
return 0;
}
U_BOOT_CMD(
wpi, 1, 1, do_waitpwrirq,
"Wait for power change interrupt",
""
);
/*
* initialize DVI panellink transmitter
*/
int dvi_init(void)
{
int i;
int ret = 0;
unsigned int oldbus;
uchar u[] = {0x08, 0x34,
0x09, 0x20,
0x0a, 0x90,
0x0c, 0x89,
0x08, 0x35};
printf("DVI: ");
oldbus = I2C_GET_BUS();
I2C_SET_BUS(0);
for (i = 0; i < sizeof(u); i += 2)
if (i2c_write (0x38, u[i], 1, &u[i + 1], 1)) {
ret = -1;
break;
}
if (ret == 0)
printf("initialized\n");
else
printf("failed - cannot initialize DVI transmitter\n");
I2C_SET_BUS(oldbus);
return ret;
}
int do_dviinit(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
dvi_init();
return 0;
}
U_BOOT_CMD(
dviinit, 1, 1, do_dviinit,
"Initialize DVI Panellink transmitter",
""
);
/*
* TODO: 'time' command might be useful for others as well.
* Move to 'common' directory.
*/
int do_time(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
unsigned long long start, end;
char c, cmd[CONFIG_SYS_CBSIZE];
char *p, *d = cmd;
int ret, i;
ulong us;
for (i = 1; i < argc; i++) {
p = argv[i];
if (i > 1)
*d++ = ' ';
while ((c = *p++) != '\0') {
*d++ = c;
}
}
*d = '\0';
start = get_ticks();
ret = run_command(cmd, 0);
end = get_ticks();
printf("ticks=%ld\n", (ulong)(end - start));
us = (ulong)((1000L * (end - start)) / (get_tbclk() / 1000));
printf("usec=%ld\n", us);
return ret;
}
U_BOOT_CMD(
time, CONFIG_SYS_MAXARGS, 1, do_time,
"run command and output execution time",
""
);
extern void video_hw_rectfill (
unsigned int bpp, /* bytes per pixel */
unsigned int dst_x, /* dest pos x */
unsigned int dst_y, /* dest pos y */
unsigned int dim_x, /* frame width */
unsigned int dim_y, /* frame height */
unsigned int color /* fill color */
);
/*
* graphics demo
* draw rectangles using pseudorandom number generator
* (see http://www.embedded.com/columns/technicalinsights/20900500)
*/
unsigned int rprime = 9972;
static unsigned int r;
static unsigned int Y;
unsigned int prng(unsigned int max)
{
if (r == 0 || r == 1 || r == -1)
r = rprime; /* keep from getting stuck */
r = (9973 * ~r) + ((Y) % 701); /* the actual algorithm */
Y = (r >> 16) % max; /* choose upper bits and reduce */
return Y;
}
int do_gfxdemo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
unsigned int color;
unsigned int x, y, dx, dy;
while (!ctrlc()) {
x = prng(1280 - 1);
y = prng(1024 - 1);
dx = prng(1280- x - 1);
dy = prng(1024 - y - 1);
color = prng(0x10000);
video_hw_rectfill(2, x, y, dx, dy, color);
}
return 0;
}
U_BOOT_CMD(
gfxdemo, CONFIG_SYS_MAXARGS, 1, do_gfxdemo,
"demo",
""
);