blob: 9e13146ecbb266a5b73dbb9b93b1e90317c79a06 [file] [log] [blame] [edit]
/*
* Chromium OS cros_ec driver
*
* Copyright (c) 2012 The Chromium OS Authors.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef _CROS_EC_H
#define _CROS_EC_H
#include <linux/compiler.h>
#include <ec_commands.h>
#include <fdtdec.h>
#include <cros_ec_message.h>
#ifndef CONFIG_DM_CROS_EC
/* Which interface is the device on? */
enum cros_ec_interface_t {
CROS_EC_IF_NONE,
CROS_EC_IF_SPI,
CROS_EC_IF_I2C,
CROS_EC_IF_LPC, /* Intel Low Pin Count interface */
CROS_EC_IF_SANDBOX,
};
#endif
/* Our configuration information */
struct cros_ec_dev {
#ifdef CONFIG_DM_CROS_EC
struct udevice *dev; /* Transport device */
#else
enum cros_ec_interface_t interface;
struct spi_slave *spi; /* Our SPI slave, if using SPI */
int node; /* Our node */
int parent_node; /* Our parent node (interface) */
unsigned int cs; /* Our chip select */
unsigned int addr; /* Device address (for I2C) */
unsigned int bus_num; /* Bus number (for I2C) */
unsigned int max_frequency; /* Maximum interface frequency */
#endif
struct fdt_gpio_state ec_int; /* GPIO used as EC interrupt line */
int protocol_version; /* Protocol version to use */
int optimise_flash_write; /* Don't write erased flash blocks */
/*
* These two buffers will always be dword-aligned and include enough
* space for up to 7 word-alignment bytes also, so we can ensure that
* the body of the message is always dword-aligned (64-bit).
*
* We use this alignment to keep ARM and x86 happy. Probably word
* alignment would be OK, there might be a small performance advantage
* to using dword.
*/
uint8_t din[ALIGN(MSG_BYTES + sizeof(int64_t), sizeof(int64_t))]
__aligned(sizeof(int64_t));
uint8_t dout[ALIGN(MSG_BYTES + sizeof(int64_t), sizeof(int64_t))]
__aligned(sizeof(int64_t));
};
/*
* Hard-code the number of columns we happen to know we have right now. It
* would be more correct to call cros_ec_info() at startup and determine the
* actual number of keyboard cols from there.
*/
#define CROS_EC_KEYSCAN_COLS 13
/* Information returned by a key scan */
struct mbkp_keyscan {
uint8_t data[CROS_EC_KEYSCAN_COLS];
};
/* Holds information about the Chrome EC */
struct fdt_cros_ec {
struct fmap_entry flash; /* Address and size of EC flash */
/*
* Byte value of erased flash, or -1 if not known. It is normally
* 0xff but some flash devices use 0 (e.g. STM32Lxxx)
*/
int flash_erase_value;
struct fmap_entry region[EC_FLASH_REGION_COUNT];
};
/**
* Read the ID of the CROS-EC device
*
* The ID is a string identifying the CROS-EC device.
*
* @param dev CROS-EC device
* @param id Place to put the ID
* @param maxlen Maximum length of the ID field
* @return 0 if ok, -1 on error
*/
int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen);
/**
* Read a keyboard scan from the CROS-EC device
*
* Send a message requesting a keyboard scan and return the result
*
* @param dev CROS-EC device
* @param scan Place to put the scan results
* @return 0 if ok, -1 on error
*/
int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan);
/**
* Read which image is currently running on the CROS-EC device.
*
* @param dev CROS-EC device
* @param image Destination for image identifier
* @return 0 if ok, <0 on error
*/
int cros_ec_read_current_image(struct cros_ec_dev *dev,
enum ec_current_image *image);
/**
* Read the hash of the CROS-EC device firmware.
*
* @param dev CROS-EC device
* @param hash Destination for hash information
* @return 0 if ok, <0 on error
*/
int cros_ec_read_hash(struct cros_ec_dev *dev,
struct ec_response_vboot_hash *hash);
/**
* Send a reboot command to the CROS-EC device.
*
* Note that some reboot commands (such as EC_REBOOT_COLD) also reboot the AP.
*
* @param dev CROS-EC device
* @param cmd Reboot command
* @param flags Flags for reboot command (EC_REBOOT_FLAG_*)
* @return 0 if ok, <0 on error
*/
int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd,
uint8_t flags);
/**
* Check if the CROS-EC device has an interrupt pending.
*
* Read the status of the external interrupt connected to the CROS-EC device.
* If no external interrupt is configured, this always returns 1.
*
* @param dev CROS-EC device
* @return 0 if no interrupt is pending
*/
int cros_ec_interrupt_pending(struct cros_ec_dev *dev);
enum {
CROS_EC_OK,
CROS_EC_ERR = 1,
CROS_EC_ERR_FDT_DECODE,
CROS_EC_ERR_CHECK_VERSION,
CROS_EC_ERR_READ_ID,
CROS_EC_ERR_DEV_INIT,
};
/**
* Initialise the Chromium OS EC driver
*
* @param blob Device tree blob containing setup information
* @param cros_ecp Returns pointer to the cros_ec device, or NULL if none
* @return 0 if we got an cros_ec device and all is well (or no cros_ec is
* expected), -ve if we should have an cros_ec device but failed to find
* one, or init failed (-CROS_EC_ERR_...).
*/
int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp);
/**
* Read information about the keyboard matrix
*
* @param dev CROS-EC device
* @param info Place to put the info structure
*/
int cros_ec_info(struct cros_ec_dev *dev,
struct ec_response_mkbp_info *info);
/**
* Read the host event flags
*
* @param dev CROS-EC device
* @param events_ptr Destination for event flags. Not changed on error.
* @return 0 if ok, <0 on error
*/
int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr);
/**
* Clear the specified host event flags
*
* @param dev CROS-EC device
* @param events Event flags to clear
* @return 0 if ok, <0 on error
*/
int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events);
/**
* Get/set flash protection
*
* @param dev CROS-EC device
* @param set_mask Mask of flags to set; if 0, just retrieves existing
* protection state without changing it.
* @param set_flags New flag values; only bits in set_mask are applied;
* ignored if set_mask=0.
* @param prot Destination for updated protection state from EC.
* @return 0 if ok, <0 on error
*/
int cros_ec_flash_protect(struct cros_ec_dev *dev,
uint32_t set_mask, uint32_t set_flags,
struct ec_response_flash_protect *resp);
/**
* Run internal tests on the cros_ec interface.
*
* @param dev CROS-EC device
* @return 0 if ok, <0 if the test failed
*/
int cros_ec_test(struct cros_ec_dev *dev);
/**
* Update the EC RW copy.
*
* @param dev CROS-EC device
* @param image the content to write
* @param imafge_size content length
* @return 0 if ok, <0 if the test failed
*/
int cros_ec_flash_update_rw(struct cros_ec_dev *dev,
const uint8_t *image, int image_size);
/**
* Return a pointer to the board's CROS-EC device
*
* This should be implemented by board files.
*
* @return pointer to CROS-EC device, or NULL if none is available
*/
struct cros_ec_dev *board_get_cros_ec_dev(void);
#ifdef CONFIG_DM_CROS_EC
struct dm_cros_ec_ops {
int (*check_version)(struct udevice *dev);
int (*command)(struct udevice *dev, uint8_t cmd, int cmd_version,
const uint8_t *dout, int dout_len,
uint8_t **dinp, int din_len);
int (*packet)(struct udevice *dev, int out_bytes, int in_bytes);
};
#define dm_cros_ec_get_ops(dev) \
((struct dm_cros_ec_ops *)(dev)->driver->ops)
int cros_ec_register(struct udevice *dev);
#else /* !CONFIG_DM_CROS_EC */
/* Internal interfaces */
int cros_ec_i2c_init(struct cros_ec_dev *dev, const void *blob);
int cros_ec_spi_init(struct cros_ec_dev *dev, const void *blob);
int cros_ec_lpc_init(struct cros_ec_dev *dev, const void *blob);
int cros_ec_sandbox_init(struct cros_ec_dev *dev, const void *blob);
/**
* Read information from the fdt for the i2c cros_ec interface
*
* @param dev CROS-EC device
* @param blob Device tree blob
* @return 0 if ok, -1 if we failed to read all required information
*/
int cros_ec_i2c_decode_fdt(struct cros_ec_dev *dev, const void *blob);
/**
* Read information from the fdt for the spi cros_ec interface
*
* @param dev CROS-EC device
* @param blob Device tree blob
* @return 0 if ok, -1 if we failed to read all required information
*/
int cros_ec_spi_decode_fdt(struct cros_ec_dev *dev, const void *blob);
/**
* Read information from the fdt for the sandbox cros_ec interface
*
* @param dev CROS-EC device
* @param blob Device tree blob
* @return 0 if ok, -1 if we failed to read all required information
*/
int cros_ec_sandbox_decode_fdt(struct cros_ec_dev *dev, const void *blob);
/**
* Check whether the LPC interface supports new-style commands.
*
* LPC has its own way of doing this, which involves checking LPC values
* visible to the host. Do this, and update dev->protocol_version accordingly.
*
* @param dev CROS-EC device to check
*/
int cros_ec_lpc_check_version(struct cros_ec_dev *dev);
/**
* Send a command to an I2C CROS-EC device and return the reply.
*
* This rather complicated function deals with sending both old-style and
* new-style commands. The old ones have just a command byte and arguments.
* The new ones have version, command, arg-len, [args], chksum so are 3 bytes
* longer.
*
* The device's internal input/output buffers are used.
*
* @param dev CROS-EC device
* @param cmd Command to send (EC_CMD_...)
* @param cmd_version Version of command to send (EC_VER_...)
* @param dout Output data (may be NULL If dout_len=0)
* @param dout_len Size of output data in bytes
* @param dinp Returns pointer to response data
* @param din_len Maximum size of response in bytes
* @return number of bytes in response, or -1 on error
*/
int cros_ec_i2c_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
const uint8_t *dout, int dout_len,
uint8_t **dinp, int din_len);
/**
* Send a command to a LPC CROS-EC device and return the reply.
*
* The device's internal input/output buffers are used.
*
* @param dev CROS-EC device
* @param cmd Command to send (EC_CMD_...)
* @param cmd_version Version of command to send (EC_VER_...)
* @param dout Output data (may be NULL If dout_len=0)
* @param dout_len Size of output data in bytes
* @param dinp Returns pointer to response data
* @param din_len Maximum size of response in bytes
* @return number of bytes in response, or -1 on error
*/
int cros_ec_lpc_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
const uint8_t *dout, int dout_len,
uint8_t **dinp, int din_len);
int cros_ec_spi_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
const uint8_t *dout, int dout_len,
uint8_t **dinp, int din_len);
/**
* Send a packet to a CROS-EC device and return the response packet.
*
* Expects the request packet to be stored in dev->dout. Stores the response
* packet in dev->din.
*
* @param dev CROS-EC device
* @param out_bytes Size of request packet to output
* @param in_bytes Maximum size of response packet to receive
* @return number of bytes in response packet, or <0 on error
*/
int cros_ec_spi_packet(struct cros_ec_dev *dev, int out_bytes, int in_bytes);
int cros_ec_sandbox_packet(struct cros_ec_dev *dev, int out_bytes,
int in_bytes);
#endif
/**
* Dump a block of data for a command.
*
* @param name Name for data (e.g. 'in', 'out')
* @param cmd Command number associated with data, or -1 for none
* @param data Data block to dump
* @param len Length of data block to dump
*/
void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len);
/**
* Calculate a simple 8-bit checksum of a data block
*
* @param data Data block to checksum
* @param size Size of data block in bytes
* @return checksum value (0 to 255)
*/
int cros_ec_calc_checksum(const uint8_t *data, int size);
/**
* Decode a flash region parameter
*
* @param argc Number of params remaining
* @param argv List of remaining parameters
* @return flash region (EC_FLASH_REGION_...) or -1 on error
*/
int cros_ec_decode_region(int argc, char * const argv[]);
int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset,
uint32_t size);
/**
* Read data from the flash
*
* Read an arbitrary amount of data from the EC flash, by repeatedly reading
* small blocks.
*
* The offset starts at 0. You can obtain the region information from
* cros_ec_flash_offset() to find out where to read for a particular region.
*
* @param dev CROS-EC device
* @param data Pointer to data buffer to read into
* @param offset Offset within flash to read from
* @param size Number of bytes to read
* @return 0 if ok, -1 on error
*/
int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset,
uint32_t size);
/**
* Write data to the flash
*
* Write an arbitrary amount of data to the EC flash, by repeatedly writing
* small blocks.
*
* The offset starts at 0. You can obtain the region information from
* cros_ec_flash_offset() to find out where to write for a particular region.
*
* Attempting to write to the region where the EC is currently running from
* will result in an error.
*
* @param dev CROS-EC device
* @param data Pointer to data buffer to write
* @param offset Offset within flash to write to.
* @param size Number of bytes to write
* @return 0 if ok, -1 on error
*/
int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data,
uint32_t offset, uint32_t size);
/**
* Obtain position and size of a flash region
*
* @param dev CROS-EC device
* @param region Flash region to query
* @param offset Returns offset of flash region in EC flash
* @param size Returns size of flash region
* @return 0 if ok, -1 on error
*/
int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region,
uint32_t *offset, uint32_t *size);
/**
* Read/write VbNvContext from/to a CROS-EC device.
*
* @param dev CROS-EC device
* @param block Buffer of VbNvContext to be read/write
* @return 0 if ok, -1 on error
*/
int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block);
int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block);
/**
* Read the version information for the EC images
*
* @param dev CROS-EC device
* @param versionp This is set to point to the version information
* @return 0 if ok, -1 on error
*/
int cros_ec_read_version(struct cros_ec_dev *dev,
struct ec_response_get_version **versionp);
/**
* Read the build information for the EC
*
* @param dev CROS-EC device
* @param versionp This is set to point to the build string
* @return 0 if ok, -1 on error
*/
int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp);
/**
* Switch on/off a LDO / FET.
*
* @param dev CROS-EC device
* @param index index of the LDO/FET to switch
* @param state new state of the LDO/FET : EC_LDO_STATE_ON|OFF
* @return 0 if ok, -1 on error
*/
int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state);
/**
* Read back a LDO / FET current state.
*
* @param dev CROS-EC device
* @param index index of the LDO/FET to switch
* @param state current state of the LDO/FET : EC_LDO_STATE_ON|OFF
* @return 0 if ok, -1 on error
*/
int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state);
/**
* Initialize the Chrome OS EC at board initialization time.
*
* @return 0 if ok, -ve on error
*/
int cros_ec_board_init(void);
/**
* Get access to the error reported when cros_ec_board_init() was called
*
* This permits delayed reporting of the EC error if it failed during
* early init.
*
* @return error (0 if there was no error, -ve if there was an error)
*/
int cros_ec_get_error(void);
/**
* Returns information from the FDT about the Chrome EC flash
*
* @param blob FDT blob to use
* @param node Node offset to read from
* @param config Structure to use to return information
*/
int cros_ec_decode_ec_flash(const void *blob, int node,
struct fdt_cros_ec *config);
/**
* Check the current keyboard state, in case recovery mode is requested.
* This function is for sandbox only.
*
* @param ec CROS-EC device
*/
void cros_ec_check_keyboard(struct cros_ec_dev *dev);
/*
* Tunnel an I2C transfer to the EC
*
* @param dev CROS-EC device
* @param chip Chip address (7-bit I2C address)
* @param addr Register address to read/write
* @param alen Length of register address in bytes
* @param buffer Buffer containing data to read/write
* @param len Length of buffer
* @param is_read 1 if this is a read, 0 if this is a write
*/
int cros_ec_i2c_xfer(struct cros_ec_dev *dev, uchar chip, uint addr,
int alen, uchar *buffer, int len, int is_read);
#endif