blob: a6f5c78376e5e3fe34631fa13b8abc9bbb8a47d6 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/* Copyright (c) 2011 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Implementation of RSA signature verification which uses a pre-processed
* key for computation. The code extends libmincrypt RSA verification code to
* support multiple RSA key lengths and hash digest algorithms.
*/
#include "avb_rsa.h"
#include "avb_sha.h"
#include "avb_util.h"
#include "avb_vbmeta_image.h"
typedef struct IAvbKey {
unsigned int len; /* Length of n[] in number of uint32_t */
uint32_t n0inv; /* -1 / n[0] mod 2^32 */
uint32_t* n; /* modulus as array (host-byte order) */
uint32_t* rr; /* R^2 as array (host-byte order) */
} IAvbKey;
static IAvbKey* iavb_parse_key_data(const uint8_t* data, size_t length) {
AvbRSAPublicKeyHeader h;
IAvbKey* key = NULL;
size_t expected_length;
unsigned int i;
const uint8_t* n;
const uint8_t* rr;
if (!avb_rsa_public_key_header_validate_and_byteswap(
(const AvbRSAPublicKeyHeader*)data, &h)) {
avb_error("Invalid key.\n");
goto fail;
}
if (!(h.key_num_bits == 2048 || h.key_num_bits == 4096 ||
h.key_num_bits == 8192)) {
avb_error("Unexpected key length.\n");
goto fail;
}
expected_length = sizeof(AvbRSAPublicKeyHeader) + 2 * h.key_num_bits / 8;
if (length != expected_length) {
avb_error("Key does not match expected length.\n");
goto fail;
}
n = data + sizeof(AvbRSAPublicKeyHeader);
rr = data + sizeof(AvbRSAPublicKeyHeader) + h.key_num_bits / 8;
/* Store n and rr following the key header so we only have to do one
* allocation.
*/
key = (IAvbKey*)(avb_malloc(sizeof(IAvbKey) + 2 * h.key_num_bits / 8));
if (key == NULL) {
goto fail;
}
key->len = h.key_num_bits / 32;
key->n0inv = h.n0inv;
key->n = (uint32_t*)(key + 1); /* Skip ahead sizeof(IAvbKey) bytes. */
key->rr = key->n + key->len;
/* Crypto-code below (modpowF4() and friends) expects the key in
* little-endian format (rather than the format we're storing the
* key in), so convert it.
*/
for (i = 0; i < key->len; i++) {
key->n[i] = avb_be32toh(((uint32_t*)n)[key->len - i - 1]);
key->rr[i] = avb_be32toh(((uint32_t*)rr)[key->len - i - 1]);
}
return key;
fail:
if (key != NULL) {
avb_free(key);
}
return NULL;
}
static void iavb_free_parsed_key(IAvbKey* key) {
avb_free(key);
}
/* a[] -= mod */
static void subM(const IAvbKey* key, uint32_t* a) {
int64_t A = 0;
uint32_t i;
for (i = 0; i < key->len; ++i) {
A += (uint64_t)a[i] - key->n[i];
a[i] = (uint32_t)A;
A >>= 32;
}
}
/* return a[] >= mod */
static int geM(const IAvbKey* key, uint32_t* a) {
uint32_t i;
for (i = key->len; i;) {
--i;
if (a[i] < key->n[i]) {
return 0;
}
if (a[i] > key->n[i]) {
return 1;
}
}
return 1; /* equal */
}
/* montgomery c[] += a * b[] / R % mod */
static void montMulAdd(const IAvbKey* key,
uint32_t* c,
const uint32_t a,
const uint32_t* b) {
uint64_t A = (uint64_t)a * b[0] + c[0];
uint32_t d0 = (uint32_t)A * key->n0inv;
uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A;
uint32_t i;
for (i = 1; i < key->len; ++i) {
A = (A >> 32) + (uint64_t)a * b[i] + c[i];
B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A;
c[i - 1] = (uint32_t)B;
}
A = (A >> 32) + (B >> 32);
c[i - 1] = (uint32_t)A;
if (A >> 32) {
subM(key, c);
}
}
/* montgomery c[] = a[] * b[] / R % mod */
static void montMul(const IAvbKey* key, uint32_t* c, uint32_t* a, uint32_t* b) {
uint32_t i;
for (i = 0; i < key->len; ++i) {
c[i] = 0;
}
for (i = 0; i < key->len; ++i) {
montMulAdd(key, c, a[i], b);
}
}
/* In-place public exponentiation. (65537}
* Input and output big-endian byte array in inout.
*/
static void modpowF4(const IAvbKey* key, uint8_t* inout) {
uint32_t* a = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t));
uint32_t* aR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t));
uint32_t* aaR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t));
if (a == NULL || aR == NULL || aaR == NULL) {
goto out;
}
uint32_t* aaa = aaR; /* Re-use location. */
int i;
/* Convert from big endian byte array to little endian word array. */
for (i = 0; i < (int)key->len; ++i) {
// Explicitly cast to uint32_t for 24-bit shift to avoid fuchsia sanitizer
// error that complains it can't be represented in 'int' type.
uint32_t tmp = (((uint32_t)inout[((key->len - 1 - i) * 4) + 0]) << 24) |
(inout[((key->len - 1 - i) * 4) + 1] << 16) |
(inout[((key->len - 1 - i) * 4) + 2] << 8) |
(inout[((key->len - 1 - i) * 4) + 3] << 0);
a[i] = tmp;
}
montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */
for (i = 0; i < 16; i += 2) {
montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */
montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */
}
montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */
/* Make sure aaa < mod; aaa is at most 1x mod too large. */
if (geM(key, aaa)) {
subM(key, aaa);
}
/* Convert to bigendian byte array */
for (i = (int)key->len - 1; i >= 0; --i) {
uint32_t tmp = aaa[i];
*inout++ = (uint8_t)(tmp >> 24);
*inout++ = (uint8_t)(tmp >> 16);
*inout++ = (uint8_t)(tmp >> 8);
*inout++ = (uint8_t)(tmp >> 0);
}
out:
if (a != NULL) {
avb_free(a);
}
if (aR != NULL) {
avb_free(aR);
}
if (aaR != NULL) {
avb_free(aaR);
}
}
/* Verify a RSA PKCS1.5 signature against an expected hash.
* Returns false on failure, true on success.
*/
bool avb_rsa_verify(const uint8_t* key,
size_t key_num_bytes,
const uint8_t* sig,
size_t sig_num_bytes,
const uint8_t* hash,
size_t hash_num_bytes,
const uint8_t* padding,
size_t padding_num_bytes) {
uint8_t* buf = NULL;
IAvbKey* parsed_key = NULL;
bool success = false;
if (key == NULL || sig == NULL || hash == NULL || padding == NULL) {
avb_error("Invalid input.\n");
goto out;
}
parsed_key = iavb_parse_key_data(key, key_num_bytes);
if (parsed_key == NULL) {
avb_error("Error parsing key.\n");
goto out;
}
if (sig_num_bytes != (parsed_key->len * sizeof(uint32_t))) {
avb_error("Signature length does not match key length.\n");
goto out;
}
if (padding_num_bytes != sig_num_bytes - hash_num_bytes) {
avb_error("Padding length does not match hash and signature lengths.\n");
goto out;
}
buf = (uint8_t*)avb_malloc(sig_num_bytes);
if (buf == NULL) {
avb_error("Error allocating memory.\n");
goto out;
}
avb_memcpy(buf, sig, sig_num_bytes);
modpowF4(parsed_key, buf);
/* Check padding bytes.
*
* Even though there are probably no timing issues here, we use
* avb_safe_memcmp() just to be on the safe side.
*/
if (avb_safe_memcmp(buf, padding, padding_num_bytes)) {
avb_error("Padding check failed.\n");
goto out;
}
/* Check hash. */
if (avb_safe_memcmp(buf + padding_num_bytes, hash, hash_num_bytes)) {
avb_error("Hash check failed.\n");
goto out;
}
success = true;
out:
if (parsed_key != NULL) {
iavb_free_parsed_key(parsed_key);
}
if (buf != NULL) {
avb_free(buf);
}
return success;
}