blob: 67ee75166acf84120968dae46d488fdd49e8ed3a [file] [log] [blame] [edit]
/*
* (C) Copyright 2000-2010
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* (C) Copyright 2008
* Guennadi Liakhovetski, DENX Software Engineering, lg@denx.de.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <errno.h>
#include <env_flags.h>
#include <fcntl.h>
#include <linux/stringify.h>
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#ifdef MTD_OLD
# include <stdint.h>
# include <linux/mtd/mtd.h>
#else
# define __user /* nothing */
# include <mtd/mtd-user.h>
#endif
#include "fw_env.h"
#include <aes.h>
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#define WHITESPACE(c) ((c == '\t') || (c == ' '))
#define min(x, y) ({ \
typeof(x) _min1 = (x); \
typeof(y) _min2 = (y); \
(void) (&_min1 == &_min2); \
_min1 < _min2 ? _min1 : _min2; })
struct envdev_s {
const char *devname; /* Device name */
ulong devoff; /* Device offset */
ulong env_size; /* environment size */
ulong erase_size; /* device erase size */
ulong env_sectors; /* number of environment sectors */
uint8_t mtd_type; /* type of the MTD device */
};
static struct envdev_s envdevices[2] =
{
{
.mtd_type = MTD_ABSENT,
}, {
.mtd_type = MTD_ABSENT,
},
};
static int dev_current;
#define DEVNAME(i) envdevices[(i)].devname
#define DEVOFFSET(i) envdevices[(i)].devoff
#define ENVSIZE(i) envdevices[(i)].env_size
#define DEVESIZE(i) envdevices[(i)].erase_size
#define ENVSECTORS(i) envdevices[(i)].env_sectors
#define DEVTYPE(i) envdevices[(i)].mtd_type
#define CUR_ENVSIZE ENVSIZE(dev_current)
#define ENV_SIZE getenvsize()
struct env_image_single {
uint32_t crc; /* CRC32 over data bytes */
char data[];
};
struct env_image_redundant {
uint32_t crc; /* CRC32 over data bytes */
unsigned char flags; /* active or obsolete */
char data[];
};
enum flag_scheme {
FLAG_NONE,
FLAG_BOOLEAN,
FLAG_INCREMENTAL,
};
struct environment {
void *image;
uint32_t *crc;
unsigned char *flags;
char *data;
enum flag_scheme flag_scheme;
};
static struct environment environment = {
.flag_scheme = FLAG_NONE,
};
/* Is AES encryption used? */
static int aes_flag;
static uint8_t aes_key[AES_KEY_LENGTH] = { 0 };
static int env_aes_cbc_crypt(char *data, const int enc);
static int HaveRedundEnv = 0;
static unsigned char active_flag = 1;
/* obsolete_flag must be 0 to efficiently set it on NOR flash without erasing */
static unsigned char obsolete_flag = 0;
#define DEFAULT_ENV_INSTANCE_STATIC
#include <env_default.h>
static int flash_io (int mode);
static char *envmatch (char * s1, char * s2);
static int parse_config (void);
#if defined(CONFIG_FILE)
static int get_config (char *);
#endif
static inline ulong getenvsize (void)
{
ulong rc = CUR_ENVSIZE - sizeof(uint32_t);
if (HaveRedundEnv)
rc -= sizeof (char);
if (aes_flag)
rc &= ~(AES_KEY_LENGTH - 1);
return rc;
}
static char *fw_string_blank(char *s, int noblank)
{
int i;
int len = strlen(s);
for (i = 0; i < len; i++, s++) {
if ((noblank && !WHITESPACE(*s)) ||
(!noblank && WHITESPACE(*s)))
break;
}
if (i == len)
return NULL;
return s;
}
/*
* Search the environment for a variable.
* Return the value, if found, or NULL, if not found.
*/
char *fw_getenv (char *name)
{
char *env, *nxt;
for (env = environment.data; *env; env = nxt + 1) {
char *val;
for (nxt = env; *nxt; ++nxt) {
if (nxt >= &environment.data[ENV_SIZE]) {
fprintf (stderr, "## Error: "
"environment not terminated\n");
return NULL;
}
}
val = envmatch (name, env);
if (!val)
continue;
return val;
}
return NULL;
}
/*
* Search the default environment for a variable.
* Return the value, if found, or NULL, if not found.
*/
char *fw_getdefenv(char *name)
{
char *env, *nxt;
for (env = default_environment; *env; env = nxt + 1) {
char *val;
for (nxt = env; *nxt; ++nxt) {
if (nxt >= &default_environment[ENV_SIZE]) {
fprintf(stderr, "## Error: "
"default environment not terminated\n");
return NULL;
}
}
val = envmatch(name, env);
if (!val)
continue;
return val;
}
return NULL;
}
static int parse_aes_key(char *key)
{
char tmp[5] = { '0', 'x', 0, 0, 0 };
unsigned long ul;
int i;
if (strnlen(key, 64) != 32) {
fprintf(stderr,
"## Error: '-a' option requires 16-byte AES key\n");
return -1;
}
for (i = 0; i < 16; i++) {
tmp[2] = key[0];
tmp[3] = key[1];
errno = 0;
ul = strtoul(tmp, NULL, 16);
if (errno) {
fprintf(stderr,
"## Error: '-a' option requires valid AES key\n");
return -1;
}
aes_key[i] = ul & 0xff;
key += 2;
}
aes_flag = 1;
return 0;
}
/*
* Print the current definition of one, or more, or all
* environment variables
*/
int fw_printenv (int argc, char *argv[])
{
char *env, *nxt;
int i, n_flag;
int rc = 0;
if (argc >= 2 && strcmp(argv[1], "-a") == 0) {
if (argc < 3) {
fprintf(stderr,
"## Error: '-a' option requires AES key\n");
return -1;
}
rc = parse_aes_key(argv[2]);
if (rc)
return rc;
argv += 2;
argc -= 2;
}
if (fw_env_open())
return -1;
if (argc == 1) { /* Print all env variables */
for (env = environment.data; *env; env = nxt + 1) {
for (nxt = env; *nxt; ++nxt) {
if (nxt >= &environment.data[ENV_SIZE]) {
fprintf (stderr, "## Error: "
"environment not terminated\n");
return -1;
}
}
printf ("%s\n", env);
}
return 0;
}
if (strcmp (argv[1], "-n") == 0) {
n_flag = 1;
++argv;
--argc;
if (argc != 2) {
fprintf (stderr, "## Error: "
"`-n' option requires exactly one argument\n");
return -1;
}
} else {
n_flag = 0;
}
for (i = 1; i < argc; ++i) { /* print single env variables */
char *name = argv[i];
char *val = NULL;
for (env = environment.data; *env; env = nxt + 1) {
for (nxt = env; *nxt; ++nxt) {
if (nxt >= &environment.data[ENV_SIZE]) {
fprintf (stderr, "## Error: "
"environment not terminated\n");
return -1;
}
}
val = envmatch (name, env);
if (val) {
if (!n_flag) {
fputs (name, stdout);
putc ('=', stdout);
}
puts (val);
break;
}
}
if (!val) {
fprintf (stderr, "## Error: \"%s\" not defined\n", name);
rc = -1;
}
}
return rc;
}
int fw_env_close(void)
{
int ret;
if (aes_flag) {
ret = env_aes_cbc_crypt(environment.data, 1);
if (ret) {
fprintf(stderr,
"Error: can't encrypt env for flash\n");
return ret;
}
}
/*
* Update CRC
*/
*environment.crc = crc32(0, (uint8_t *) environment.data, ENV_SIZE);
/* write environment back to flash */
if (flash_io(O_RDWR)) {
fprintf(stderr,
"Error: can't write fw_env to flash\n");
return -1;
}
return 0;
}
/*
* Set/Clear a single variable in the environment.
* This is called in sequence to update the environment
* in RAM without updating the copy in flash after each set
*/
int fw_env_write(char *name, char *value)
{
int len;
char *env, *nxt;
char *oldval = NULL;
int deleting, creating, overwriting;
/*
* search if variable with this name already exists
*/
for (nxt = env = environment.data; *env; env = nxt + 1) {
for (nxt = env; *nxt; ++nxt) {
if (nxt >= &environment.data[ENV_SIZE]) {
fprintf(stderr, "## Error: "
"environment not terminated\n");
errno = EINVAL;
return -1;
}
}
if ((oldval = envmatch (name, env)) != NULL)
break;
}
deleting = (oldval && !(value && strlen(value)));
creating = (!oldval && (value && strlen(value)));
overwriting = (oldval && (value && strlen(value)));
/* check for permission */
if (deleting) {
if (env_flags_validate_varaccess(name,
ENV_FLAGS_VARACCESS_PREVENT_DELETE)) {
printf("Can't delete \"%s\"\n", name);
errno = EROFS;
return -1;
}
} else if (overwriting) {
if (env_flags_validate_varaccess(name,
ENV_FLAGS_VARACCESS_PREVENT_OVERWR)) {
printf("Can't overwrite \"%s\"\n", name);
errno = EROFS;
return -1;
} else if (env_flags_validate_varaccess(name,
ENV_FLAGS_VARACCESS_PREVENT_NONDEF_OVERWR)) {
const char *defval = fw_getdefenv(name);
if (defval == NULL)
defval = "";
if (strcmp(oldval, defval)
!= 0) {
printf("Can't overwrite \"%s\"\n", name);
errno = EROFS;
return -1;
}
}
} else if (creating) {
if (env_flags_validate_varaccess(name,
ENV_FLAGS_VARACCESS_PREVENT_CREATE)) {
printf("Can't create \"%s\"\n", name);
errno = EROFS;
return -1;
}
} else
/* Nothing to do */
return 0;
if (deleting || overwriting) {
if (*++nxt == '\0') {
*env = '\0';
} else {
for (;;) {
*env = *nxt++;
if ((*env == '\0') && (*nxt == '\0'))
break;
++env;
}
}
*++env = '\0';
}
/* Delete only ? */
if (!value || !strlen(value))
return 0;
/*
* Append new definition at the end
*/
for (env = environment.data; *env || *(env + 1); ++env);
if (env > environment.data)
++env;
/*
* Overflow when:
* "name" + "=" + "val" +"\0\0" > CUR_ENVSIZE - (env-environment)
*/
len = strlen (name) + 2;
/* add '=' for first arg, ' ' for all others */
len += strlen(value) + 1;
if (len > (&environment.data[ENV_SIZE] - env)) {
fprintf (stderr,
"Error: environment overflow, \"%s\" deleted\n",
name);
return -1;
}
while ((*env = *name++) != '\0')
env++;
*env = '=';
while ((*++env = *value++) != '\0')
;
/* end is marked with double '\0' */
*++env = '\0';
return 0;
}
/*
* Deletes or sets environment variables. Returns -1 and sets errno error codes:
* 0 - OK
* EINVAL - need at least 1 argument
* EROFS - certain variables ("ethaddr", "serial#") cannot be
* modified or deleted
*
*/
int fw_setenv(int argc, char *argv[])
{
int i, rc;
size_t len;
char *name;
char *value = NULL;
if (argc < 2) {
errno = EINVAL;
return -1;
}
if (strcmp(argv[1], "-a") == 0) {
if (argc < 3) {
fprintf(stderr,
"## Error: '-a' option requires AES key\n");
return -1;
}
rc = parse_aes_key(argv[2]);
if (rc)
return rc;
argv += 2;
argc -= 2;
}
if (argc < 2) {
errno = EINVAL;
return -1;
}
if (fw_env_open()) {
fprintf(stderr, "Error: environment not initialized\n");
return -1;
}
name = argv[1];
if (env_flags_validate_env_set_params(argc, argv) < 0)
return 1;
len = 0;
for (i = 2; i < argc; ++i) {
char *val = argv[i];
size_t val_len = strlen(val);
if (value)
value[len - 1] = ' ';
value = realloc(value, len + val_len + 1);
if (!value) {
fprintf(stderr,
"Cannot malloc %zu bytes: %s\n",
len, strerror(errno));
return -1;
}
memcpy(value + len, val, val_len);
len += val_len;
value[len++] = '\0';
}
fw_env_write(name, value);
free(value);
return fw_env_close();
}
/*
* Parse a file and configure the u-boot variables.
* The script file has a very simple format, as follows:
*
* Each line has a couple with name, value:
* <white spaces>variable_name<white spaces>variable_value
*
* Both variable_name and variable_value are interpreted as strings.
* Any character after <white spaces> and before ending \r\n is interpreted
* as variable's value (no comment allowed on these lines !)
*
* Comments are allowed if the first character in the line is #
*
* Returns -1 and sets errno error codes:
* 0 - OK
* -1 - Error
*/
int fw_parse_script(char *fname)
{
FILE *fp;
char dump[1024]; /* Maximum line length in the file */
char *name;
char *val;
int lineno = 0;
int len;
int ret = 0;
if (fw_env_open()) {
fprintf(stderr, "Error: environment not initialized\n");
return -1;
}
if (strcmp(fname, "-") == 0)
fp = stdin;
else {
fp = fopen(fname, "r");
if (fp == NULL) {
fprintf(stderr, "I cannot open %s for reading\n",
fname);
return -1;
}
}
while (fgets(dump, sizeof(dump), fp)) {
lineno++;
len = strlen(dump);
/*
* Read a whole line from the file. If the line is too long
* or is not terminated, reports an error and exit.
*/
if (dump[len - 1] != '\n') {
fprintf(stderr,
"Line %d not corrected terminated or too long\n",
lineno);
ret = -1;
break;
}
/* Drop ending line feed / carriage return */
while (len > 0 && (dump[len - 1] == '\n' ||
dump[len - 1] == '\r')) {
dump[len - 1] = '\0';
len--;
}
/* Skip comment or empty lines */
if ((len == 0) || dump[0] == '#')
continue;
/*
* Search for variable's name,
* remove leading whitespaces
*/
name = fw_string_blank(dump, 1);
if (!name)
continue;
/* The first white space is the end of variable name */
val = fw_string_blank(name, 0);
len = strlen(name);
if (val) {
*val++ = '\0';
if ((val - name) < len)
val = fw_string_blank(val, 1);
else
val = NULL;
}
#ifdef DEBUG
fprintf(stderr, "Setting %s : %s\n",
name, val ? val : " removed");
#endif
if (env_flags_validate_type(name, val) < 0) {
ret = -1;
break;
}
/*
* If there is an error setting a variable,
* try to save the environment and returns an error
*/
if (fw_env_write(name, val)) {
fprintf(stderr,
"fw_env_write returns with error : %s\n",
strerror(errno));
ret = -1;
break;
}
}
/* Close file if not stdin */
if (strcmp(fname, "-") != 0)
fclose(fp);
ret |= fw_env_close();
return ret;
}
/*
* Test for bad block on NAND, just returns 0 on NOR, on NAND:
* 0 - block is good
* > 0 - block is bad
* < 0 - failed to test
*/
static int flash_bad_block (int fd, uint8_t mtd_type, loff_t *blockstart)
{
if (mtd_type == MTD_NANDFLASH) {
int badblock = ioctl (fd, MEMGETBADBLOCK, blockstart);
if (badblock < 0) {
perror ("Cannot read bad block mark");
return badblock;
}
if (badblock) {
#ifdef DEBUG
fprintf (stderr, "Bad block at 0x%llx, "
"skipping\n", *blockstart);
#endif
return badblock;
}
}
return 0;
}
/*
* Read data from flash at an offset into a provided buffer. On NAND it skips
* bad blocks but makes sure it stays within ENVSECTORS (dev) starting from
* the DEVOFFSET (dev) block. On NOR the loop is only run once.
*/
static int flash_read_buf (int dev, int fd, void *buf, size_t count,
off_t offset, uint8_t mtd_type)
{
size_t blocklen; /* erase / write length - one block on NAND,
0 on NOR */
size_t processed = 0; /* progress counter */
size_t readlen = count; /* current read length */
off_t top_of_range; /* end of the last block we may use */
off_t block_seek; /* offset inside the current block to the start
of the data */
loff_t blockstart; /* running start of the current block -
MEMGETBADBLOCK needs 64 bits */
int rc;
blockstart = (offset / DEVESIZE (dev)) * DEVESIZE (dev);
/* Offset inside a block */
block_seek = offset - blockstart;
if (mtd_type == MTD_NANDFLASH) {
/*
* NAND: calculate which blocks we are reading. We have
* to read one block at a time to skip bad blocks.
*/
blocklen = DEVESIZE (dev);
/*
* To calculate the top of the range, we have to use the
* global DEVOFFSET (dev), which can be different from offset
*/
top_of_range = ((DEVOFFSET(dev) / blocklen) +
ENVSECTORS (dev)) * blocklen;
/* Limit to one block for the first read */
if (readlen > blocklen - block_seek)
readlen = blocklen - block_seek;
} else {
blocklen = 0;
top_of_range = offset + count;
}
/* This only runs once on NOR flash */
while (processed < count) {
rc = flash_bad_block (fd, mtd_type, &blockstart);
if (rc < 0) /* block test failed */
return -1;
if (blockstart + block_seek + readlen > top_of_range) {
/* End of range is reached */
fprintf (stderr,
"Too few good blocks within range\n");
return -1;
}
if (rc) { /* block is bad */
blockstart += blocklen;
continue;
}
/*
* If a block is bad, we retry in the next block at the same
* offset - see common/env_nand.c::writeenv()
*/
lseek (fd, blockstart + block_seek, SEEK_SET);
rc = read (fd, buf + processed, readlen);
if (rc != readlen) {
fprintf (stderr, "Read error on %s: %s\n",
DEVNAME (dev), strerror (errno));
return -1;
}
#ifdef DEBUG
fprintf(stderr, "Read 0x%x bytes at 0x%llx on %s\n",
rc, blockstart + block_seek, DEVNAME(dev));
#endif
processed += readlen;
readlen = min (blocklen, count - processed);
block_seek = 0;
blockstart += blocklen;
}
return processed;
}
/*
* Write count bytes at offset, but stay within ENVSECTORS (dev) sectors of
* DEVOFFSET (dev). Similar to the read case above, on NOR and dataflash we
* erase and write the whole data at once.
*/
static int flash_write_buf (int dev, int fd, void *buf, size_t count,
off_t offset, uint8_t mtd_type)
{
void *data;
struct erase_info_user erase;
size_t blocklen; /* length of NAND block / NOR erase sector */
size_t erase_len; /* whole area that can be erased - may include
bad blocks */
size_t erasesize; /* erase / write length - one block on NAND,
whole area on NOR */
size_t processed = 0; /* progress counter */
size_t write_total; /* total size to actually write - excluding
bad blocks */
off_t erase_offset; /* offset to the first erase block (aligned)
below offset */
off_t block_seek; /* offset inside the erase block to the start
of the data */
off_t top_of_range; /* end of the last block we may use */
loff_t blockstart; /* running start of the current block -
MEMGETBADBLOCK needs 64 bits */
int rc;
/*
* For mtd devices only offset and size of the environment do matter
*/
if (mtd_type == MTD_ABSENT) {
blocklen = count;
top_of_range = offset + count;
erase_len = blocklen;
blockstart = offset;
block_seek = 0;
write_total = blocklen;
} else {
blocklen = DEVESIZE(dev);
top_of_range = ((DEVOFFSET(dev) / blocklen) +
ENVSECTORS(dev)) * blocklen;
erase_offset = (offset / blocklen) * blocklen;
/* Maximum area we may use */
erase_len = top_of_range - erase_offset;
blockstart = erase_offset;
/* Offset inside a block */
block_seek = offset - erase_offset;
/*
* Data size we actually write: from the start of the block
* to the start of the data, then count bytes of data, and
* to the end of the block
*/
write_total = ((block_seek + count + blocklen - 1) /
blocklen) * blocklen;
}
/*
* Support data anywhere within erase sectors: read out the complete
* area to be erased, replace the environment image, write the whole
* block back again.
*/
if (write_total > count) {
data = malloc (erase_len);
if (!data) {
fprintf (stderr,
"Cannot malloc %zu bytes: %s\n",
erase_len, strerror (errno));
return -1;
}
rc = flash_read_buf (dev, fd, data, write_total, erase_offset,
mtd_type);
if (write_total != rc)
return -1;
#ifdef DEBUG
fprintf(stderr, "Preserving data ");
if (block_seek != 0)
fprintf(stderr, "0x%x - 0x%lx", 0, block_seek - 1);
if (block_seek + count != write_total) {
if (block_seek != 0)
fprintf(stderr, " and ");
fprintf(stderr, "0x%lx - 0x%x",
block_seek + count, write_total - 1);
}
fprintf(stderr, "\n");
#endif
/* Overwrite the old environment */
memcpy (data + block_seek, buf, count);
} else {
/*
* We get here, iff offset is block-aligned and count is a
* multiple of blocklen - see write_total calculation above
*/
data = buf;
}
if (mtd_type == MTD_NANDFLASH) {
/*
* NAND: calculate which blocks we are writing. We have
* to write one block at a time to skip bad blocks.
*/
erasesize = blocklen;
} else {
erasesize = erase_len;
}
erase.length = erasesize;
/* This only runs once on NOR flash and SPI-dataflash */
while (processed < write_total) {
rc = flash_bad_block (fd, mtd_type, &blockstart);
if (rc < 0) /* block test failed */
return rc;
if (blockstart + erasesize > top_of_range) {
fprintf (stderr, "End of range reached, aborting\n");
return -1;
}
if (rc) { /* block is bad */
blockstart += blocklen;
continue;
}
if (mtd_type != MTD_ABSENT) {
erase.start = blockstart;
ioctl(fd, MEMUNLOCK, &erase);
/* These do not need an explicit erase cycle */
if (mtd_type != MTD_DATAFLASH)
if (ioctl(fd, MEMERASE, &erase) != 0) {
fprintf(stderr,
"MTD erase error on %s: %s\n",
DEVNAME(dev), strerror(errno));
return -1;
}
}
if (lseek (fd, blockstart, SEEK_SET) == -1) {
fprintf (stderr,
"Seek error on %s: %s\n",
DEVNAME (dev), strerror (errno));
return -1;
}
#ifdef DEBUG
fprintf(stderr, "Write 0x%x bytes at 0x%llx\n", erasesize,
blockstart);
#endif
if (write (fd, data + processed, erasesize) != erasesize) {
fprintf (stderr, "Write error on %s: %s\n",
DEVNAME (dev), strerror (errno));
return -1;
}
if (mtd_type != MTD_ABSENT)
ioctl(fd, MEMLOCK, &erase);
processed += erasesize;
block_seek = 0;
blockstart += erasesize;
}
if (write_total > count)
free (data);
return processed;
}
/*
* Set obsolete flag at offset - NOR flash only
*/
static int flash_flag_obsolete (int dev, int fd, off_t offset)
{
int rc;
struct erase_info_user erase;
erase.start = DEVOFFSET (dev);
erase.length = DEVESIZE (dev);
/* This relies on the fact, that obsolete_flag == 0 */
rc = lseek (fd, offset, SEEK_SET);
if (rc < 0) {
fprintf (stderr, "Cannot seek to set the flag on %s \n",
DEVNAME (dev));
return rc;
}
ioctl (fd, MEMUNLOCK, &erase);
rc = write (fd, &obsolete_flag, sizeof (obsolete_flag));
ioctl (fd, MEMLOCK, &erase);
if (rc < 0)
perror ("Could not set obsolete flag");
return rc;
}
/* Encrypt or decrypt the environment before writing or reading it. */
static int env_aes_cbc_crypt(char *payload, const int enc)
{
uint8_t *data = (uint8_t *)payload;
const int len = getenvsize();
uint8_t key_exp[AES_EXPAND_KEY_LENGTH];
uint32_t aes_blocks;
/* First we expand the key. */
aes_expand_key(aes_key, key_exp);
/* Calculate the number of AES blocks to encrypt. */
aes_blocks = DIV_ROUND_UP(len, AES_KEY_LENGTH);
if (enc)
aes_cbc_encrypt_blocks(key_exp, data, data, aes_blocks);
else
aes_cbc_decrypt_blocks(key_exp, data, data, aes_blocks);
return 0;
}
static int flash_write (int fd_current, int fd_target, int dev_target)
{
int rc;
switch (environment.flag_scheme) {
case FLAG_NONE:
break;
case FLAG_INCREMENTAL:
(*environment.flags)++;
break;
case FLAG_BOOLEAN:
*environment.flags = active_flag;
break;
default:
fprintf (stderr, "Unimplemented flash scheme %u \n",
environment.flag_scheme);
return -1;
}
#ifdef DEBUG
fprintf(stderr, "Writing new environment at 0x%lx on %s\n",
DEVOFFSET (dev_target), DEVNAME (dev_target));
#endif
/* Amlogic Add */
DEVTYPE(dev_target) = MTD_ABSENT;
rc = flash_write_buf(dev_target, fd_target, environment.image,
CUR_ENVSIZE, DEVOFFSET(dev_target),
DEVTYPE(dev_target));
if (rc < 0)
return rc;
if (environment.flag_scheme == FLAG_BOOLEAN) {
/* Have to set obsolete flag */
off_t offset = DEVOFFSET (dev_current) +
offsetof (struct env_image_redundant, flags);
#ifdef DEBUG
fprintf(stderr,
"Setting obsolete flag in environment at 0x%lx on %s\n",
DEVOFFSET (dev_current), DEVNAME (dev_current));
#endif
flash_flag_obsolete (dev_current, fd_current, offset);
}
return 0;
}
static int flash_read (int fd)
{
struct mtd_info_user mtdinfo;
int rc;
struct stat st;
rc = fstat(fd, &st);
if (rc < 0) {
fprintf(stderr, "Cannot stat the file %s\n",
DEVNAME(dev_current));
return -1;
}
/*
* Never use mtd part as env in amlogic case;
* For Nand/Emmc base, we use chardev '/dev/nand_env',
* and /dev/block/env.
*/
memset(&mtdinfo, 0, sizeof(mtdinfo));
mtdinfo.type = MTD_ABSENT;
DEVTYPE(dev_current) = mtdinfo.type;
rc = flash_read_buf(dev_current, fd, environment.image, CUR_ENVSIZE,
DEVOFFSET (dev_current), mtdinfo.type);
if (rc != CUR_ENVSIZE)
return -1;
return 0;
}
static int flash_io (int mode)
{
int fd_current, fd_target, rc, dev_target;
/* dev_current: fd_current, erase_current */
fd_current = open (DEVNAME (dev_current), mode);
if (fd_current < 0) {
fprintf (stderr,
"Can't open %s: %s\n",
DEVNAME (dev_current), strerror (errno));
return -1;
}
if (mode == O_RDWR) {
if (HaveRedundEnv) {
/* switch to next partition for writing */
dev_target = !dev_current;
/* dev_target: fd_target, erase_target */
fd_target = open (DEVNAME (dev_target), mode);
if (fd_target < 0) {
fprintf (stderr,
"Can't open %s: %s\n",
DEVNAME (dev_target),
strerror (errno));
rc = -1;
goto exit;
}
} else {
dev_target = dev_current;
fd_target = fd_current;
}
rc = flash_write (fd_current, fd_target, dev_target);
if (HaveRedundEnv) {
if (close (fd_target)) {
fprintf (stderr,
"I/O error on %s: %s\n",
DEVNAME (dev_target),
strerror (errno));
rc = -1;
}
}
} else {
rc = flash_read (fd_current);
}
exit:
if (close (fd_current)) {
fprintf (stderr,
"I/O error on %s: %s\n",
DEVNAME (dev_current), strerror (errno));
return -1;
}
return rc;
}
/*
* s1 is either a simple 'name', or a 'name=value' pair.
* s2 is a 'name=value' pair.
* If the names match, return the value of s2, else NULL.
*/
static char *envmatch (char * s1, char * s2)
{
if (s1 == NULL || s2 == NULL)
return NULL;
while (*s1 == *s2++)
if (*s1++ == '=')
return s2;
if (*s1 == '\0' && *(s2 - 1) == '=')
return s2;
return NULL;
}
/*
* Prevent confusion if running from erased flash memory
*/
int fw_env_open(void)
{
int crc0, crc0_ok;
unsigned char flag0;
void *addr0;
int crc1, crc1_ok;
unsigned char flag1;
void *addr1;
int ret;
struct env_image_single *single;
struct env_image_redundant *redundant;
if (parse_config ()) /* should fill envdevices */
return -1;
addr0 = calloc(1, CUR_ENVSIZE);
if (addr0 == NULL) {
fprintf(stderr,
"Not enough memory for environment (%ld bytes)\n",
CUR_ENVSIZE);
return -1;
}
/* read environment from FLASH to local buffer */
environment.image = addr0;
if (HaveRedundEnv) {
redundant = addr0;
environment.crc = &redundant->crc;
environment.flags = &redundant->flags;
environment.data = redundant->data;
} else {
single = addr0;
environment.crc = &single->crc;
environment.flags = NULL;
environment.data = single->data;
}
dev_current = 0;
if (flash_io (O_RDONLY))
return -1;
crc0 = crc32 (0, (uint8_t *) environment.data, ENV_SIZE);
if (aes_flag) {
ret = env_aes_cbc_crypt(environment.data, 0);
if (ret)
return ret;
}
crc0_ok = (crc0 == *environment.crc);
if (!HaveRedundEnv) {
if (!crc0_ok) {
fprintf (stderr,
"Warning: Bad CRC, using default environment\n");
memcpy(environment.data, default_environment, sizeof default_environment);
}
} else {
flag0 = *environment.flags;
dev_current = 1;
addr1 = calloc(1, CUR_ENVSIZE);
if (addr1 == NULL) {
fprintf(stderr,
"Not enough memory for environment (%ld bytes)\n",
CUR_ENVSIZE);
return -1;
}
redundant = addr1;
/*
* have to set environment.image for flash_read(), careful -
* other pointers in environment still point inside addr0
*/
environment.image = addr1;
if (flash_io (O_RDONLY))
return -1;
/* Check flag scheme compatibility */
if (DEVTYPE(dev_current) == MTD_NORFLASH &&
DEVTYPE(!dev_current) == MTD_NORFLASH) {
environment.flag_scheme = FLAG_BOOLEAN;
} else if (DEVTYPE(dev_current) == MTD_NANDFLASH &&
DEVTYPE(!dev_current) == MTD_NANDFLASH) {
environment.flag_scheme = FLAG_INCREMENTAL;
} else if (DEVTYPE(dev_current) == MTD_DATAFLASH &&
DEVTYPE(!dev_current) == MTD_DATAFLASH) {
environment.flag_scheme = FLAG_BOOLEAN;
} else if (DEVTYPE(dev_current) == MTD_UBIVOLUME &&
DEVTYPE(!dev_current) == MTD_UBIVOLUME) {
environment.flag_scheme = FLAG_INCREMENTAL;
} else if (DEVTYPE(dev_current) == MTD_ABSENT &&
DEVTYPE(!dev_current) == MTD_ABSENT) {
environment.flag_scheme = FLAG_INCREMENTAL;
} else {
fprintf (stderr, "Incompatible flash types!\n");
return -1;
}
crc1 = crc32 (0, (uint8_t *) redundant->data, ENV_SIZE);
if (aes_flag) {
ret = env_aes_cbc_crypt(redundant->data, 0);
if (ret)
return ret;
}
crc1_ok = (crc1 == redundant->crc);
flag1 = redundant->flags;
if (crc0_ok && !crc1_ok) {
dev_current = 0;
} else if (!crc0_ok && crc1_ok) {
dev_current = 1;
} else if (!crc0_ok && !crc1_ok) {
fprintf (stderr,
"Warning: Bad CRC, using default environment\n");
memcpy (environment.data, default_environment,
sizeof default_environment);
dev_current = 0;
} else {
switch (environment.flag_scheme) {
case FLAG_BOOLEAN:
if (flag0 == active_flag &&
flag1 == obsolete_flag) {
dev_current = 0;
} else if (flag0 == obsolete_flag &&
flag1 == active_flag) {
dev_current = 1;
} else if (flag0 == flag1) {
dev_current = 0;
} else if (flag0 == 0xFF) {
dev_current = 0;
} else if (flag1 == 0xFF) {
dev_current = 1;
} else {
dev_current = 0;
}
break;
case FLAG_INCREMENTAL:
if (flag0 == 255 && flag1 == 0)
dev_current = 1;
else if ((flag1 == 255 && flag0 == 0) ||
flag0 >= flag1)
dev_current = 0;
else /* flag1 > flag0 */
dev_current = 1;
break;
default:
fprintf (stderr, "Unknown flag scheme %u \n",
environment.flag_scheme);
return -1;
}
}
/*
* If we are reading, we don't need the flag and the CRC any
* more, if we are writing, we will re-calculate CRC and update
* flags before writing out
*/
if (dev_current) {
environment.image = addr1;
environment.crc = &redundant->crc;
environment.flags = &redundant->flags;
environment.data = redundant->data;
free (addr0);
} else {
environment.image = addr0;
/* Other pointers are already set */
free (addr1);
}
#ifdef DEBUG
fprintf(stderr, "Selected env in %s\n", DEVNAME(dev_current));
#endif
}
return 0;
}
static int parse_config ()
{
struct stat st;
#if defined(CONFIG_FILE)
/* Fills in DEVNAME(), ENVSIZE(), DEVESIZE(). Or don't. */
if (get_config (CONFIG_FILE)) {
fprintf (stderr,
"Cannot parse config file: %s\n", strerror (errno));
return -1;
}
#else
DEVNAME (0) = DEVICE1_NAME;
DEVOFFSET (0) = DEVICE1_OFFSET;
ENVSIZE (0) = ENV1_SIZE;
/* Default values are: erase-size=env-size */
DEVESIZE (0) = ENVSIZE (0);
/* #sectors=env-size/erase-size (rounded up) */
ENVSECTORS (0) = (ENVSIZE(0) + DEVESIZE(0) - 1) / DEVESIZE(0);
#ifdef DEVICE1_ESIZE
DEVESIZE (0) = DEVICE1_ESIZE;
#endif
#ifdef DEVICE1_ENVSECTORS
ENVSECTORS (0) = DEVICE1_ENVSECTORS;
#endif
#ifdef HAVE_REDUND
DEVNAME (1) = DEVICE2_NAME;
DEVOFFSET (1) = DEVICE2_OFFSET;
ENVSIZE (1) = ENV2_SIZE;
/* Default values are: erase-size=env-size */
DEVESIZE (1) = ENVSIZE (1);
/* #sectors=env-size/erase-size (rounded up) */
ENVSECTORS (1) = (ENVSIZE(1) + DEVESIZE(1) - 1) / DEVESIZE(1);
#ifdef DEVICE2_ESIZE
DEVESIZE (1) = DEVICE2_ESIZE;
#endif
#ifdef DEVICE2_ENVSECTORS
ENVSECTORS (1) = DEVICE2_ENVSECTORS;
#endif
HaveRedundEnv = 1;
#endif
#endif
if (stat (DEVNAME (0), &st)) {
fprintf (stderr,
"Cannot access MTD device %s: %s\n",
DEVNAME (0), strerror (errno));
return -1;
}
if (HaveRedundEnv && stat (DEVNAME (1), &st)) {
fprintf (stderr,
"Cannot access MTD device %s: %s\n",
DEVNAME (1), strerror (errno));
return -1;
}
return 0;
}
#if defined(CONFIG_FILE)
static int get_config (char *fname)
{
FILE *fp;
int i = 0;
int rc;
char dump[128];
char *devname;
fp = fopen (fname, "r");
if (fp == NULL)
return -1;
while (i < 2 && fgets (dump, sizeof (dump), fp)) {
/* Skip incomplete conversions and comment strings */
if (dump[0] == '#')
continue;
rc = sscanf (dump, "%ms %lx %lx %lx %lx",
&devname,
&DEVOFFSET (i),
&ENVSIZE (i),
&DEVESIZE (i),
&ENVSECTORS (i));
if (rc < 3)
continue;
DEVNAME(i) = devname;
if (rc < 4)
/* Assume the erase size is the same as the env-size */
DEVESIZE(i) = ENVSIZE(i);
if (rc < 5)
/* Assume enough env sectors to cover the environment */
ENVSECTORS (i) = (ENVSIZE(i) + DEVESIZE(i) - 1) / DEVESIZE(i);
i++;
}
fclose (fp);
HaveRedundEnv = i - 1;
if (!i) { /* No valid entries found */
errno = EINVAL;
return -1;
} else
return 0;
}
#endif