| /* Return arc hyperbole sine for double value, with the imaginary part |
| of the result possibly adjusted for use in computing other |
| functions. |
| Copyright (C) 1997-2014 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include <complex.h> |
| #include <math.h> |
| #include <math_private.h> |
| #include <float.h> |
| |
| /* Return the complex inverse hyperbolic sine of finite nonzero Z, |
| with the imaginary part of the result subtracted from pi/2 if ADJ |
| is nonzero. */ |
| |
| __complex__ double |
| __kernel_casinh (__complex__ double x, int adj) |
| { |
| __complex__ double res; |
| double rx, ix; |
| __complex__ double y; |
| |
| /* Avoid cancellation by reducing to the first quadrant. */ |
| rx = fabs (__real__ x); |
| ix = fabs (__imag__ x); |
| |
| if (rx >= 1.0 / DBL_EPSILON || ix >= 1.0 / DBL_EPSILON) |
| { |
| /* For large x in the first quadrant, x + csqrt (1 + x * x) |
| is sufficiently close to 2 * x to make no significant |
| difference to the result; avoid possible overflow from |
| the squaring and addition. */ |
| __real__ y = rx; |
| __imag__ y = ix; |
| |
| if (adj) |
| { |
| double t = __real__ y; |
| __real__ y = __copysign (__imag__ y, __imag__ x); |
| __imag__ y = t; |
| } |
| |
| res = __clog (y); |
| __real__ res += M_LN2; |
| } |
| else if (rx >= 0.5 && ix < DBL_EPSILON / 8.0) |
| { |
| double s = __ieee754_hypot (1.0, rx); |
| |
| __real__ res = __ieee754_log (rx + s); |
| if (adj) |
| __imag__ res = __ieee754_atan2 (s, __imag__ x); |
| else |
| __imag__ res = __ieee754_atan2 (ix, s); |
| } |
| else if (rx < DBL_EPSILON / 8.0 && ix >= 1.5) |
| { |
| double s = __ieee754_sqrt ((ix + 1.0) * (ix - 1.0)); |
| |
| __real__ res = __ieee754_log (ix + s); |
| if (adj) |
| __imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x)); |
| else |
| __imag__ res = __ieee754_atan2 (s, rx); |
| } |
| else if (ix > 1.0 && ix < 1.5 && rx < 0.5) |
| { |
| if (rx < DBL_EPSILON * DBL_EPSILON) |
| { |
| double ix2m1 = (ix + 1.0) * (ix - 1.0); |
| double s = __ieee754_sqrt (ix2m1); |
| |
| __real__ res = __log1p (2.0 * (ix2m1 + ix * s)) / 2.0; |
| if (adj) |
| __imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x)); |
| else |
| __imag__ res = __ieee754_atan2 (s, rx); |
| } |
| else |
| { |
| double ix2m1 = (ix + 1.0) * (ix - 1.0); |
| double rx2 = rx * rx; |
| double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix); |
| double d = __ieee754_sqrt (ix2m1 * ix2m1 + f); |
| double dp = d + ix2m1; |
| double dm = f / dp; |
| double r1 = __ieee754_sqrt ((dm + rx2) / 2.0); |
| double r2 = rx * ix / r1; |
| |
| __real__ res = __log1p (rx2 + dp + 2.0 * (rx * r1 + ix * r2)) / 2.0; |
| if (adj) |
| __imag__ res = __ieee754_atan2 (rx + r1, __copysign (ix + r2, |
| __imag__ x)); |
| else |
| __imag__ res = __ieee754_atan2 (ix + r2, rx + r1); |
| } |
| } |
| else if (ix == 1.0 && rx < 0.5) |
| { |
| if (rx < DBL_EPSILON / 8.0) |
| { |
| __real__ res = __log1p (2.0 * (rx + __ieee754_sqrt (rx))) / 2.0; |
| if (adj) |
| __imag__ res = __ieee754_atan2 (__ieee754_sqrt (rx), |
| __copysign (1.0, __imag__ x)); |
| else |
| __imag__ res = __ieee754_atan2 (1.0, __ieee754_sqrt (rx)); |
| } |
| else |
| { |
| double d = rx * __ieee754_sqrt (4.0 + rx * rx); |
| double s1 = __ieee754_sqrt ((d + rx * rx) / 2.0); |
| double s2 = __ieee754_sqrt ((d - rx * rx) / 2.0); |
| |
| __real__ res = __log1p (rx * rx + d + 2.0 * (rx * s1 + s2)) / 2.0; |
| if (adj) |
| __imag__ res = __ieee754_atan2 (rx + s1, __copysign (1.0 + s2, |
| __imag__ x)); |
| else |
| __imag__ res = __ieee754_atan2 (1.0 + s2, rx + s1); |
| } |
| } |
| else if (ix < 1.0 && rx < 0.5) |
| { |
| if (ix >= DBL_EPSILON) |
| { |
| if (rx < DBL_EPSILON * DBL_EPSILON) |
| { |
| double onemix2 = (1.0 + ix) * (1.0 - ix); |
| double s = __ieee754_sqrt (onemix2); |
| |
| __real__ res = __log1p (2.0 * rx / s) / 2.0; |
| if (adj) |
| __imag__ res = __ieee754_atan2 (s, __imag__ x); |
| else |
| __imag__ res = __ieee754_atan2 (ix, s); |
| } |
| else |
| { |
| double onemix2 = (1.0 + ix) * (1.0 - ix); |
| double rx2 = rx * rx; |
| double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix); |
| double d = __ieee754_sqrt (onemix2 * onemix2 + f); |
| double dp = d + onemix2; |
| double dm = f / dp; |
| double r1 = __ieee754_sqrt ((dp + rx2) / 2.0); |
| double r2 = rx * ix / r1; |
| |
| __real__ res |
| = __log1p (rx2 + dm + 2.0 * (rx * r1 + ix * r2)) / 2.0; |
| if (adj) |
| __imag__ res = __ieee754_atan2 (rx + r1, |
| __copysign (ix + r2, |
| __imag__ x)); |
| else |
| __imag__ res = __ieee754_atan2 (ix + r2, rx + r1); |
| } |
| } |
| else |
| { |
| double s = __ieee754_hypot (1.0, rx); |
| |
| __real__ res = __log1p (2.0 * rx * (rx + s)) / 2.0; |
| if (adj) |
| __imag__ res = __ieee754_atan2 (s, __imag__ x); |
| else |
| __imag__ res = __ieee754_atan2 (ix, s); |
| } |
| if (__real__ res < DBL_MIN) |
| { |
| volatile double force_underflow = __real__ res * __real__ res; |
| (void) force_underflow; |
| } |
| } |
| else |
| { |
| __real__ y = (rx - ix) * (rx + ix) + 1.0; |
| __imag__ y = 2.0 * rx * ix; |
| |
| y = __csqrt (y); |
| |
| __real__ y += rx; |
| __imag__ y += ix; |
| |
| if (adj) |
| { |
| double t = __real__ y; |
| __real__ y = copysign (__imag__ y, __imag__ x); |
| __imag__ y = t; |
| } |
| |
| res = __clog (y); |
| } |
| |
| /* Give results the correct sign for the original argument. */ |
| __real__ res = __copysign (__real__ res, __real__ x); |
| __imag__ res = __copysign (__imag__ res, (adj ? 1.0 : __imag__ x)); |
| |
| return res; |
| } |