| /* Compute complex base 10 logarithm. |
| Copyright (C) 1997-2014 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include <complex.h> |
| #include <math.h> |
| #include <math_private.h> |
| #include <float.h> |
| |
| /* To avoid spurious underflows, use this definition to treat IBM long |
| double as approximating an IEEE-style format. */ |
| #if LDBL_MANT_DIG == 106 |
| # undef LDBL_EPSILON |
| # define LDBL_EPSILON 0x1p-106L |
| #endif |
| |
| /* log_10 (2). */ |
| #define M_LOG10_2l 0.3010299956639811952137388947244930267682L |
| |
| __complex__ long double |
| __clog10l (__complex__ long double x) |
| { |
| __complex__ long double result; |
| int rcls = fpclassify (__real__ x); |
| int icls = fpclassify (__imag__ x); |
| |
| if (__builtin_expect (rcls == FP_ZERO && icls == FP_ZERO, 0)) |
| { |
| /* Real and imaginary part are 0.0. */ |
| __imag__ result = signbit (__real__ x) ? M_PIl : 0.0; |
| __imag__ result = __copysignl (__imag__ result, __imag__ x); |
| /* Yes, the following line raises an exception. */ |
| __real__ result = -1.0 / fabsl (__real__ x); |
| } |
| else if (__builtin_expect (rcls != FP_NAN && icls != FP_NAN, 1)) |
| { |
| /* Neither real nor imaginary part is NaN. */ |
| long double absx = fabsl (__real__ x), absy = fabsl (__imag__ x); |
| int scale = 0; |
| |
| if (absx < absy) |
| { |
| long double t = absx; |
| absx = absy; |
| absy = t; |
| } |
| |
| if (absx > LDBL_MAX / 2.0L) |
| { |
| scale = -1; |
| absx = __scalbnl (absx, scale); |
| absy = (absy >= LDBL_MIN * 2.0L ? __scalbnl (absy, scale) : 0.0L); |
| } |
| else if (absx < LDBL_MIN && absy < LDBL_MIN) |
| { |
| scale = LDBL_MANT_DIG; |
| absx = __scalbnl (absx, scale); |
| absy = __scalbnl (absy, scale); |
| } |
| |
| if (absx == 1.0L && scale == 0) |
| { |
| long double absy2 = absy * absy; |
| if (absy2 <= LDBL_MIN * 2.0L * M_LN10l) |
| __real__ result |
| = (absy2 / 2.0L - absy2 * absy2 / 4.0L) * M_LOG10El; |
| else |
| __real__ result = __log1pl (absy2) * (M_LOG10El / 2.0L); |
| } |
| else if (absx > 1.0L && absx < 2.0L && absy < 1.0L && scale == 0) |
| { |
| long double d2m1 = (absx - 1.0L) * (absx + 1.0L); |
| if (absy >= LDBL_EPSILON) |
| d2m1 += absy * absy; |
| __real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L); |
| } |
| else if (absx < 1.0L |
| && absx >= 0.75L |
| && absy < LDBL_EPSILON / 2.0L |
| && scale == 0) |
| { |
| long double d2m1 = (absx - 1.0L) * (absx + 1.0L); |
| __real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L); |
| } |
| else if (absx < 1.0L && (absx >= 0.75L || absy >= 0.5L) && scale == 0) |
| { |
| long double d2m1 = __x2y2m1l (absx, absy); |
| __real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L); |
| } |
| else |
| { |
| long double d = __ieee754_hypotl (absx, absy); |
| __real__ result = __ieee754_log10l (d) - scale * M_LOG10_2l; |
| } |
| |
| __imag__ result = M_LOG10El * __ieee754_atan2l (__imag__ x, __real__ x); |
| } |
| else |
| { |
| __imag__ result = __nanl (""); |
| if (rcls == FP_INFINITE || icls == FP_INFINITE) |
| /* Real or imaginary part is infinite. */ |
| __real__ result = HUGE_VALL; |
| else |
| __real__ result = __nanl (""); |
| } |
| |
| return result; |
| } |
| weak_alias (__clog10l, clog10l) |