| /* Return arc hyperbole sine for float value, with the imaginary part |
| of the result possibly adjusted for use in computing other |
| functions. |
| Copyright (C) 1997-2014 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include <complex.h> |
| #include <math.h> |
| #include <math_private.h> |
| #include <float.h> |
| |
| /* Return the complex inverse hyperbolic sine of finite nonzero Z, |
| with the imaginary part of the result subtracted from pi/2 if ADJ |
| is nonzero. */ |
| |
| __complex__ float |
| __kernel_casinhf (__complex__ float x, int adj) |
| { |
| __complex__ float res; |
| float rx, ix; |
| __complex__ float y; |
| |
| /* Avoid cancellation by reducing to the first quadrant. */ |
| rx = fabsf (__real__ x); |
| ix = fabsf (__imag__ x); |
| |
| if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON) |
| { |
| /* For large x in the first quadrant, x + csqrt (1 + x * x) |
| is sufficiently close to 2 * x to make no significant |
| difference to the result; avoid possible overflow from |
| the squaring and addition. */ |
| __real__ y = rx; |
| __imag__ y = ix; |
| |
| if (adj) |
| { |
| float t = __real__ y; |
| __real__ y = __copysignf (__imag__ y, __imag__ x); |
| __imag__ y = t; |
| } |
| |
| res = __clogf (y); |
| __real__ res += (float) M_LN2; |
| } |
| else if (rx >= 0.5f && ix < FLT_EPSILON / 8.0f) |
| { |
| float s = __ieee754_hypotf (1.0f, rx); |
| |
| __real__ res = __ieee754_logf (rx + s); |
| if (adj) |
| __imag__ res = __ieee754_atan2f (s, __imag__ x); |
| else |
| __imag__ res = __ieee754_atan2f (ix, s); |
| } |
| else if (rx < FLT_EPSILON / 8.0f && ix >= 1.5f) |
| { |
| float s = __ieee754_sqrtf ((ix + 1.0f) * (ix - 1.0f)); |
| |
| __real__ res = __ieee754_logf (ix + s); |
| if (adj) |
| __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); |
| else |
| __imag__ res = __ieee754_atan2f (s, rx); |
| } |
| else if (ix > 1.0f && ix < 1.5f && rx < 0.5f) |
| { |
| if (rx < FLT_EPSILON * FLT_EPSILON) |
| { |
| float ix2m1 = (ix + 1.0f) * (ix - 1.0f); |
| float s = __ieee754_sqrtf (ix2m1); |
| |
| __real__ res = __log1pf (2.0f * (ix2m1 + ix * s)) / 2.0f; |
| if (adj) |
| __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); |
| else |
| __imag__ res = __ieee754_atan2f (s, rx); |
| } |
| else |
| { |
| float ix2m1 = (ix + 1.0f) * (ix - 1.0f); |
| float rx2 = rx * rx; |
| float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); |
| float d = __ieee754_sqrtf (ix2m1 * ix2m1 + f); |
| float dp = d + ix2m1; |
| float dm = f / dp; |
| float r1 = __ieee754_sqrtf ((dm + rx2) / 2.0f); |
| float r2 = rx * ix / r1; |
| |
| __real__ res |
| = __log1pf (rx2 + dp + 2.0f * (rx * r1 + ix * r2)) / 2.0f; |
| if (adj) |
| __imag__ res = __ieee754_atan2f (rx + r1, __copysignf (ix + r2, |
| __imag__ x)); |
| else |
| __imag__ res = __ieee754_atan2f (ix + r2, rx + r1); |
| } |
| } |
| else if (ix == 1.0f && rx < 0.5f) |
| { |
| if (rx < FLT_EPSILON / 8.0f) |
| { |
| __real__ res = __log1pf (2.0f * (rx + __ieee754_sqrtf (rx))) / 2.0f; |
| if (adj) |
| __imag__ res = __ieee754_atan2f (__ieee754_sqrtf (rx), |
| __copysignf (1.0f, __imag__ x)); |
| else |
| __imag__ res = __ieee754_atan2f (1.0f, __ieee754_sqrtf (rx)); |
| } |
| else |
| { |
| float d = rx * __ieee754_sqrtf (4.0f + rx * rx); |
| float s1 = __ieee754_sqrtf ((d + rx * rx) / 2.0f); |
| float s2 = __ieee754_sqrtf ((d - rx * rx) / 2.0f); |
| |
| __real__ res = __log1pf (rx * rx + d + 2.0f * (rx * s1 + s2)) / 2.0f; |
| if (adj) |
| __imag__ res = __ieee754_atan2f (rx + s1, |
| __copysignf (1.0f + s2, |
| __imag__ x)); |
| else |
| __imag__ res = __ieee754_atan2f (1.0f + s2, rx + s1); |
| } |
| } |
| else if (ix < 1.0f && rx < 0.5f) |
| { |
| if (ix >= FLT_EPSILON) |
| { |
| if (rx < FLT_EPSILON * FLT_EPSILON) |
| { |
| float onemix2 = (1.0f + ix) * (1.0f - ix); |
| float s = __ieee754_sqrtf (onemix2); |
| |
| __real__ res = __log1pf (2.0f * rx / s) / 2.0f; |
| if (adj) |
| __imag__ res = __ieee754_atan2f (s, __imag__ x); |
| else |
| __imag__ res = __ieee754_atan2f (ix, s); |
| } |
| else |
| { |
| float onemix2 = (1.0f + ix) * (1.0f - ix); |
| float rx2 = rx * rx; |
| float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); |
| float d = __ieee754_sqrtf (onemix2 * onemix2 + f); |
| float dp = d + onemix2; |
| float dm = f / dp; |
| float r1 = __ieee754_sqrtf ((dp + rx2) / 2.0f); |
| float r2 = rx * ix / r1; |
| |
| __real__ res |
| = __log1pf (rx2 + dm + 2.0f * (rx * r1 + ix * r2)) / 2.0f; |
| if (adj) |
| __imag__ res = __ieee754_atan2f (rx + r1, |
| __copysignf (ix + r2, |
| __imag__ x)); |
| else |
| __imag__ res = __ieee754_atan2f (ix + r2, rx + r1); |
| } |
| } |
| else |
| { |
| float s = __ieee754_hypotf (1.0f, rx); |
| |
| __real__ res = __log1pf (2.0f * rx * (rx + s)) / 2.0f; |
| if (adj) |
| __imag__ res = __ieee754_atan2f (s, __imag__ x); |
| else |
| __imag__ res = __ieee754_atan2f (ix, s); |
| } |
| if (__real__ res < FLT_MIN) |
| { |
| volatile float force_underflow = __real__ res * __real__ res; |
| (void) force_underflow; |
| } |
| } |
| else |
| { |
| __real__ y = (rx - ix) * (rx + ix) + 1.0f; |
| __imag__ y = 2.0f * rx * ix; |
| |
| y = __csqrtf (y); |
| |
| __real__ y += rx; |
| __imag__ y += ix; |
| |
| if (adj) |
| { |
| float t = __real__ y; |
| __real__ y = __copysignf (__imag__ y, __imag__ x); |
| __imag__ y = t; |
| } |
| |
| res = __clogf (y); |
| } |
| |
| /* Give results the correct sign for the original argument. */ |
| __real__ res = __copysignf (__real__ res, __real__ x); |
| __imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x)); |
| |
| return res; |
| } |