| /* Compute complex base 10 logarithm. |
| Copyright (C) 1997-2014 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include <complex.h> |
| #include <math.h> |
| #include <math_private.h> |
| #include <float.h> |
| |
| /* log_10 (2). */ |
| #define M_LOG10_2 0.3010299956639811952137388947244930267682 |
| |
| __complex__ double |
| __clog10 (__complex__ double x) |
| { |
| __complex__ double result; |
| int rcls = fpclassify (__real__ x); |
| int icls = fpclassify (__imag__ x); |
| |
| if (__builtin_expect (rcls == FP_ZERO && icls == FP_ZERO, 0)) |
| { |
| /* Real and imaginary part are 0.0. */ |
| __imag__ result = signbit (__real__ x) ? M_PI : 0.0; |
| __imag__ result = __copysign (__imag__ result, __imag__ x); |
| /* Yes, the following line raises an exception. */ |
| __real__ result = -1.0 / fabs (__real__ x); |
| } |
| else if (__builtin_expect (rcls != FP_NAN && icls != FP_NAN, 1)) |
| { |
| /* Neither real nor imaginary part is NaN. */ |
| double absx = fabs (__real__ x), absy = fabs (__imag__ x); |
| int scale = 0; |
| |
| if (absx < absy) |
| { |
| double t = absx; |
| absx = absy; |
| absy = t; |
| } |
| |
| if (absx > DBL_MAX / 2.0) |
| { |
| scale = -1; |
| absx = __scalbn (absx, scale); |
| absy = (absy >= DBL_MIN * 2.0 ? __scalbn (absy, scale) : 0.0); |
| } |
| else if (absx < DBL_MIN && absy < DBL_MIN) |
| { |
| scale = DBL_MANT_DIG; |
| absx = __scalbn (absx, scale); |
| absy = __scalbn (absy, scale); |
| } |
| |
| if (absx == 1.0 && scale == 0) |
| { |
| double absy2 = absy * absy; |
| if (absy2 <= DBL_MIN * 2.0 * M_LN10) |
| { |
| #if __FLT_EVAL_METHOD__ == 0 |
| __real__ result = (absy2 / 2.0 - absy2 * absy2 / 4.0) * M_LOG10E; |
| #else |
| volatile double force_underflow = absy2 * absy2 / 4.0; |
| __real__ result = (absy2 / 2.0 - force_underflow) * M_LOG10E; |
| #endif |
| } |
| else |
| __real__ result = __log1p (absy2) * (M_LOG10E / 2.0); |
| } |
| else if (absx > 1.0 && absx < 2.0 && absy < 1.0 && scale == 0) |
| { |
| double d2m1 = (absx - 1.0) * (absx + 1.0); |
| if (absy >= DBL_EPSILON) |
| d2m1 += absy * absy; |
| __real__ result = __log1p (d2m1) * (M_LOG10E / 2.0); |
| } |
| else if (absx < 1.0 |
| && absx >= 0.75 |
| && absy < DBL_EPSILON / 2.0 |
| && scale == 0) |
| { |
| double d2m1 = (absx - 1.0) * (absx + 1.0); |
| __real__ result = __log1p (d2m1) * (M_LOG10E / 2.0); |
| } |
| else if (absx < 1.0 && (absx >= 0.75 || absy >= 0.5) && scale == 0) |
| { |
| double d2m1 = __x2y2m1 (absx, absy); |
| __real__ result = __log1p (d2m1) * (M_LOG10E / 2.0); |
| } |
| else |
| { |
| double d = __ieee754_hypot (absx, absy); |
| __real__ result = __ieee754_log10 (d) - scale * M_LOG10_2; |
| } |
| |
| __imag__ result = M_LOG10E * __ieee754_atan2 (__imag__ x, __real__ x); |
| } |
| else |
| { |
| __imag__ result = __nan (""); |
| if (rcls == FP_INFINITE || icls == FP_INFINITE) |
| /* Real or imaginary part is infinite. */ |
| __real__ result = HUGE_VAL; |
| else |
| __real__ result = __nan (""); |
| } |
| |
| return result; |
| } |
| weak_alias (__clog10, clog10) |
| #ifdef NO_LONG_DOUBLE |
| strong_alias (__clog10, __clog10l) |
| weak_alias (__clog10, clog10l) |
| #endif |