| /* Compute complex base 10 logarithm. |
| Copyright (C) 1997-2014 Free Software Foundation, Inc. |
| This file is part of the GNU C Library. |
| Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
| |
| The GNU C Library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| The GNU C Library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with the GNU C Library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include <complex.h> |
| #include <math.h> |
| #include <math_private.h> |
| #include <float.h> |
| |
| /* log_10 (2). */ |
| #define M_LOG10_2f 0.3010299956639811952137388947244930267682f |
| |
| __complex__ float |
| __clog10f (__complex__ float x) |
| { |
| __complex__ float result; |
| int rcls = fpclassify (__real__ x); |
| int icls = fpclassify (__imag__ x); |
| |
| if (__builtin_expect (rcls == FP_ZERO && icls == FP_ZERO, 0)) |
| { |
| /* Real and imaginary part are 0.0. */ |
| __imag__ result = signbit (__real__ x) ? M_PI : 0.0; |
| __imag__ result = __copysignf (__imag__ result, __imag__ x); |
| /* Yes, the following line raises an exception. */ |
| __real__ result = -1.0 / fabsf (__real__ x); |
| } |
| else if (__builtin_expect (rcls != FP_NAN && icls != FP_NAN, 1)) |
| { |
| /* Neither real nor imaginary part is NaN. */ |
| float absx = fabsf (__real__ x), absy = fabsf (__imag__ x); |
| int scale = 0; |
| |
| if (absx < absy) |
| { |
| float t = absx; |
| absx = absy; |
| absy = t; |
| } |
| |
| if (absx > FLT_MAX / 2.0f) |
| { |
| scale = -1; |
| absx = __scalbnf (absx, scale); |
| absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f); |
| } |
| else if (absx < FLT_MIN && absy < FLT_MIN) |
| { |
| scale = FLT_MANT_DIG; |
| absx = __scalbnf (absx, scale); |
| absy = __scalbnf (absy, scale); |
| } |
| |
| if (absx == 1.0f && scale == 0) |
| { |
| float absy2 = absy * absy; |
| if (absy2 <= FLT_MIN * 2.0f * (float) M_LN10) |
| { |
| #if __FLT_EVAL_METHOD__ == 0 |
| __real__ result |
| = (absy2 / 2.0f - absy2 * absy2 / 4.0f) * (float) M_LOG10E; |
| #else |
| volatile float force_underflow = absy2 * absy2 / 4.0f; |
| __real__ result |
| = (absy2 / 2.0f - force_underflow) * (float) M_LOG10E; |
| #endif |
| } |
| else |
| __real__ result = __log1pf (absy2) * ((float) M_LOG10E / 2.0f); |
| } |
| else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0) |
| { |
| float d2m1 = (absx - 1.0f) * (absx + 1.0f); |
| if (absy >= FLT_EPSILON) |
| d2m1 += absy * absy; |
| __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f); |
| } |
| else if (absx < 1.0f |
| && absx >= 0.75f |
| && absy < FLT_EPSILON / 2.0f |
| && scale == 0) |
| { |
| float d2m1 = (absx - 1.0f) * (absx + 1.0f); |
| __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f); |
| } |
| else if (absx < 1.0f && (absx >= 0.75f || absy >= 0.5f) && scale == 0) |
| { |
| float d2m1 = __x2y2m1f (absx, absy); |
| __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f); |
| } |
| else |
| { |
| float d = __ieee754_hypotf (absx, absy); |
| __real__ result = __ieee754_log10f (d) - scale * M_LOG10_2f; |
| } |
| |
| __imag__ result = M_LOG10E * __ieee754_atan2f (__imag__ x, __real__ x); |
| } |
| else |
| { |
| __imag__ result = __nanf (""); |
| if (rcls == FP_INFINITE || icls == FP_INFINITE) |
| /* Real or imaginary part is infinite. */ |
| __real__ result = HUGE_VALF; |
| else |
| __real__ result = __nanf (""); |
| } |
| |
| return result; |
| } |
| #ifndef __clog10f |
| weak_alias (__clog10f, clog10f) |
| #endif |