blob: 081c7592d6339a5bad94e9b7325e795d14e68edd [file] [log] [blame]
/* Complex sine hyperbole function for float.
Copyright (C) 1997-2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__csinhf (__complex__ float x)
{
__complex__ float retval;
int negate = signbit (__real__ x);
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
__real__ x = fabsf (__real__ x);
if (__builtin_expect (rcls >= FP_ZERO, 1))
{
/* Real part is finite. */
if (__builtin_expect (icls >= FP_ZERO, 1))
{
/* Imaginary part is finite. */
const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2);
float sinix, cosix;
if (__builtin_expect (icls != FP_SUBNORMAL, 1))
{
__sincosf (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0f;
}
if (fabsf (__real__ x) > t)
{
float exp_t = __ieee754_expf (t);
float rx = fabsf (__real__ x);
if (signbit (__real__ x))
cosix = -cosix;
rx -= t;
sinix *= exp_t / 2.0f;
cosix *= exp_t / 2.0f;
if (rx > t)
{
rx -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (rx > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = FLT_MAX * cosix;
__imag__ retval = FLT_MAX * sinix;
}
else
{
float exp_val = __ieee754_expf (rx);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
}
else
{
__real__ retval = __ieee754_sinhf (__real__ x) * cosix;
__imag__ retval = __ieee754_coshf (__real__ x) * sinix;
}
if (negate)
__real__ retval = -__real__ retval;
if (fabsf (__real__ retval) < FLT_MIN)
{
volatile float force_underflow
= __real__ retval * __real__ retval;
(void) force_underflow;
}
if (fabsf (__imag__ retval) < FLT_MIN)
{
volatile float force_underflow
= __imag__ retval * __imag__ retval;
(void) force_underflow;
}
}
else
{
if (rcls == FP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0);
__imag__ retval = __nanf ("") + __nanf ("");
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
}
else
{
__real__ retval = __nanf ("");
__imag__ retval = __nanf ("");
feraiseexcept (FE_INVALID);
}
}
}
else if (__builtin_expect (rcls == FP_INFINITE, 1))
{
/* Real part is infinite. */
if (__builtin_expect (icls > FP_ZERO, 1))
{
/* Imaginary part is finite. */
float sinix, cosix;
if (__builtin_expect (icls != FP_SUBNORMAL, 1))
{
__sincosf (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0f;
}
__real__ retval = __copysignf (HUGE_VALF, cosix);
__imag__ retval = __copysignf (HUGE_VALF, sinix);
if (negate)
__real__ retval = -__real__ retval;
}
else if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = negate ? -HUGE_VALF : HUGE_VALF;
__imag__ retval = __imag__ x;
}
else
{
/* The addition raises the invalid exception. */
__real__ retval = HUGE_VALF;
__imag__ retval = __nanf ("") + __nanf ("");
#ifdef FE_INVALID
if (icls == FP_INFINITE)
feraiseexcept (FE_INVALID);
#endif
}
}
else
{
__real__ retval = __nanf ("");
__imag__ retval = __imag__ x == 0.0 ? __imag__ x : __nanf ("");
}
return retval;
}
#ifndef __csinhf
weak_alias (__csinhf, csinhf)
#endif