| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "sparse.h" |
| |
| template <typename Scalar, typename StorageIndex> |
| void sparse_vector(int rows, int cols) { |
| double densityMat = (std::max)(8. / (rows * cols), 0.01); |
| double densityVec = (std::max)(8. / (rows), 0.1); |
| typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix; |
| typedef Matrix<Scalar, Dynamic, 1> DenseVector; |
| typedef Matrix<DenseIndex, Dynamic, 1> DenseIndexVector; |
| typedef SparseVector<Scalar, 0, StorageIndex> SparseVectorType; |
| typedef SparseMatrix<Scalar, 0, StorageIndex> SparseMatrixType; |
| Scalar eps = 1e-6; |
| |
| SparseMatrixType m1(rows, rows); |
| SparseVectorType v1(rows), v2(rows), v3(rows); |
| DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); |
| DenseVector refV1 = DenseVector::Random(rows), refV2 = DenseVector::Random(rows), refV3 = DenseVector::Random(rows); |
| |
| std::vector<int> zerocoords, nonzerocoords; |
| initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords); |
| initSparse<Scalar>(densityMat, refM1, m1); |
| |
| initSparse<Scalar>(densityVec, refV2, v2); |
| initSparse<Scalar>(densityVec, refV3, v3); |
| |
| Scalar s1 = internal::random<Scalar>(); |
| |
| // test coeff and coeffRef |
| for (unsigned int i = 0; i < zerocoords.size(); ++i) { |
| VERIFY_IS_MUCH_SMALLER_THAN(v1.coeff(zerocoords[i]), eps); |
| // VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 ); |
| } |
| { |
| VERIFY(int(nonzerocoords.size()) == v1.nonZeros()); |
| int j = 0; |
| for (typename SparseVectorType::InnerIterator it(v1); it; ++it, ++j) { |
| VERIFY(nonzerocoords[j] == it.index()); |
| VERIFY_IS_EQUAL(it.value(), v1.coeff(it.index())); |
| VERIFY_IS_EQUAL(it.value(), refV1.coeff(it.index())); |
| } |
| } |
| VERIFY_IS_APPROX(v1, refV1); |
| |
| // test coeffRef with reallocation |
| { |
| SparseVectorType v4(rows); |
| DenseVector v5 = DenseVector::Zero(rows); |
| for (int k = 0; k < rows; ++k) { |
| int i = internal::random<int>(0, rows - 1); |
| Scalar v = internal::random<Scalar>(); |
| v4.coeffRef(i) += v; |
| v5.coeffRef(i) += v; |
| } |
| VERIFY_IS_APPROX(v4, v5); |
| } |
| |
| v1.coeffRef(nonzerocoords[0]) = Scalar(5); |
| refV1.coeffRef(nonzerocoords[0]) = Scalar(5); |
| VERIFY_IS_APPROX(v1, refV1); |
| |
| VERIFY_IS_APPROX(v1 + v2, refV1 + refV2); |
| VERIFY_IS_APPROX(v1 + v2 + v3, refV1 + refV2 + refV3); |
| |
| VERIFY_IS_APPROX(v1 * s1 - v2, refV1 * s1 - refV2); |
| |
| VERIFY_IS_APPROX(v1 *= s1, refV1 *= s1); |
| VERIFY_IS_APPROX(v1 /= s1, refV1 /= s1); |
| |
| VERIFY_IS_APPROX(v1 += v2, refV1 += refV2); |
| VERIFY_IS_APPROX(v1 -= v2, refV1 -= refV2); |
| |
| VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2)); |
| VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2)); |
| |
| VERIFY_IS_APPROX(m1 * v2, refM1 * refV2); |
| VERIFY_IS_APPROX(v1.dot(m1 * v2), refV1.dot(refM1 * refV2)); |
| { |
| int i = internal::random<int>(0, rows - 1); |
| VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i))); |
| } |
| |
| VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm()); |
| |
| VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm()); |
| |
| // test aliasing |
| VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1)); |
| VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval())); |
| VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1)); |
| |
| // sparse matrix to sparse vector |
| SparseMatrixType mv1; |
| VERIFY_IS_APPROX((mv1 = v1), v1); |
| VERIFY_IS_APPROX(mv1, (v1 = mv1)); |
| VERIFY_IS_APPROX(mv1, (v1 = mv1.transpose())); |
| |
| // check copy to dense vector with transpose |
| refV3.resize(0); |
| VERIFY_IS_APPROX(refV3 = v1.transpose(), v1.toDense()); |
| VERIFY_IS_APPROX(DenseVector(v1), v1.toDense()); |
| |
| // test conservative resize |
| { |
| std::vector<StorageIndex> inc; |
| if (rows > 3) inc.push_back(-3); |
| inc.push_back(0); |
| inc.push_back(3); |
| inc.push_back(1); |
| inc.push_back(10); |
| |
| for (std::size_t i = 0; i < inc.size(); i++) { |
| StorageIndex incRows = inc[i]; |
| SparseVectorType vec1(rows); |
| DenseVector refVec1 = DenseVector::Zero(rows); |
| initSparse<Scalar>(densityVec, refVec1, vec1); |
| |
| vec1.conservativeResize(rows + incRows); |
| refVec1.conservativeResize(rows + incRows); |
| if (incRows > 0) refVec1.tail(incRows).setZero(); |
| |
| VERIFY_IS_APPROX(vec1, refVec1); |
| |
| // Insert new values |
| if (incRows > 0) vec1.insert(vec1.rows() - 1) = refVec1(refVec1.rows() - 1) = 1; |
| |
| VERIFY_IS_APPROX(vec1, refVec1); |
| } |
| } |
| |
| // test sort |
| if (rows > 1) { |
| SparseVectorType vec1(rows); |
| DenseVector refVec1 = DenseVector::Zero(rows); |
| DenseIndexVector innerIndices(rows); |
| innerIndices.setLinSpaced(0, rows - 1); |
| std::random_device rd; |
| std::mt19937 g(rd()); |
| std::shuffle(innerIndices.begin(), innerIndices.end(), g); |
| Index nz = internal::random<Index>(2, rows / 2); |
| for (Index k = 0; k < nz; k++) { |
| Index i = innerIndices[k]; |
| Scalar val = internal::random<Scalar>(); |
| refVec1.coeffRef(i) = val; |
| vec1.insert(i) = val; |
| } |
| |
| vec1.template sortInnerIndices<std::greater<>>(); |
| VERIFY_IS_APPROX(vec1, refVec1); |
| VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted<std::greater<>>(), 1); |
| VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted<std::less<>>(), 0); |
| vec1.template sortInnerIndices<std::less<>>(); |
| VERIFY_IS_APPROX(vec1, refVec1); |
| VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted<std::greater<>>(), 0); |
| VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted<std::less<>>(), 1); |
| } |
| } |
| void test_pruning() { |
| using SparseVectorType = SparseVector<double, 0, int>; |
| |
| SparseVectorType vec; |
| auto init_vec = [&]() { |
| ; |
| vec.resize(10); |
| vec.insert(3) = 0.1; |
| vec.insert(5) = 1.0; |
| vec.insert(8) = -0.1; |
| vec.insert(9) = -0.2; |
| }; |
| init_vec(); |
| |
| VERIFY_IS_EQUAL(vec.nonZeros(), 4); |
| VERIFY_IS_EQUAL(vec.prune(0.1, 1.0), 2); |
| VERIFY_IS_EQUAL(vec.nonZeros(), 2); |
| VERIFY_IS_EQUAL(vec.coeff(5), 1.0); |
| VERIFY_IS_EQUAL(vec.coeff(9), -0.2); |
| |
| init_vec(); |
| VERIFY_IS_EQUAL(vec.prune([](double v) { return v >= 0; }), 2); |
| VERIFY_IS_EQUAL(vec.nonZeros(), 2); |
| VERIFY_IS_EQUAL(vec.coeff(3), 0.1); |
| VERIFY_IS_EQUAL(vec.coeff(5), 1.0); |
| } |
| |
| EIGEN_DECLARE_TEST(sparse_vector) { |
| for (int i = 0; i < g_repeat; i++) { |
| int r = Eigen::internal::random<int>(1, 500), c = Eigen::internal::random<int>(1, 500); |
| if (Eigen::internal::random<int>(0, 4) == 0) { |
| r = c; // check square matrices in 25% of tries |
| } |
| EIGEN_UNUSED_VARIABLE(r + c); |
| |
| CALL_SUBTEST_1((sparse_vector<double, int>(8, 8))); |
| CALL_SUBTEST_2((sparse_vector<std::complex<double>, int>(r, c))); |
| CALL_SUBTEST_1((sparse_vector<double, long int>(r, c))); |
| CALL_SUBTEST_1((sparse_vector<double, short>(r, c))); |
| } |
| |
| CALL_SUBTEST_1(test_pruning()); |
| } |