blob: 83ad3241a579dd754253b831529c807e3bd793c3 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "sparse.h"
template <typename Scalar, typename StorageIndex>
void sparse_vector(int rows, int cols) {
double densityMat = (std::max)(8. / (rows * cols), 0.01);
double densityVec = (std::max)(8. / (rows), 0.1);
typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix;
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
typedef Matrix<DenseIndex, Dynamic, 1> DenseIndexVector;
typedef SparseVector<Scalar, 0, StorageIndex> SparseVectorType;
typedef SparseMatrix<Scalar, 0, StorageIndex> SparseMatrixType;
Scalar eps = 1e-6;
SparseMatrixType m1(rows, rows);
SparseVectorType v1(rows), v2(rows), v3(rows);
DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
DenseVector refV1 = DenseVector::Random(rows), refV2 = DenseVector::Random(rows), refV3 = DenseVector::Random(rows);
std::vector<int> zerocoords, nonzerocoords;
initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords);
initSparse<Scalar>(densityMat, refM1, m1);
initSparse<Scalar>(densityVec, refV2, v2);
initSparse<Scalar>(densityVec, refV3, v3);
Scalar s1 = internal::random<Scalar>();
// test coeff and coeffRef
for (unsigned int i = 0; i < zerocoords.size(); ++i) {
VERIFY_IS_MUCH_SMALLER_THAN(v1.coeff(zerocoords[i]), eps);
// VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 );
}
{
VERIFY(int(nonzerocoords.size()) == v1.nonZeros());
int j = 0;
for (typename SparseVectorType::InnerIterator it(v1); it; ++it, ++j) {
VERIFY(nonzerocoords[j] == it.index());
VERIFY_IS_EQUAL(it.value(), v1.coeff(it.index()));
VERIFY_IS_EQUAL(it.value(), refV1.coeff(it.index()));
}
}
VERIFY_IS_APPROX(v1, refV1);
// test coeffRef with reallocation
{
SparseVectorType v4(rows);
DenseVector v5 = DenseVector::Zero(rows);
for (int k = 0; k < rows; ++k) {
int i = internal::random<int>(0, rows - 1);
Scalar v = internal::random<Scalar>();
v4.coeffRef(i) += v;
v5.coeffRef(i) += v;
}
VERIFY_IS_APPROX(v4, v5);
}
v1.coeffRef(nonzerocoords[0]) = Scalar(5);
refV1.coeffRef(nonzerocoords[0]) = Scalar(5);
VERIFY_IS_APPROX(v1, refV1);
VERIFY_IS_APPROX(v1 + v2, refV1 + refV2);
VERIFY_IS_APPROX(v1 + v2 + v3, refV1 + refV2 + refV3);
VERIFY_IS_APPROX(v1 * s1 - v2, refV1 * s1 - refV2);
VERIFY_IS_APPROX(v1 *= s1, refV1 *= s1);
VERIFY_IS_APPROX(v1 /= s1, refV1 /= s1);
VERIFY_IS_APPROX(v1 += v2, refV1 += refV2);
VERIFY_IS_APPROX(v1 -= v2, refV1 -= refV2);
VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2));
VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2));
VERIFY_IS_APPROX(m1 * v2, refM1 * refV2);
VERIFY_IS_APPROX(v1.dot(m1 * v2), refV1.dot(refM1 * refV2));
{
int i = internal::random<int>(0, rows - 1);
VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i)));
}
VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm());
VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm());
// test aliasing
VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1));
VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval()));
VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1));
// sparse matrix to sparse vector
SparseMatrixType mv1;
VERIFY_IS_APPROX((mv1 = v1), v1);
VERIFY_IS_APPROX(mv1, (v1 = mv1));
VERIFY_IS_APPROX(mv1, (v1 = mv1.transpose()));
// check copy to dense vector with transpose
refV3.resize(0);
VERIFY_IS_APPROX(refV3 = v1.transpose(), v1.toDense());
VERIFY_IS_APPROX(DenseVector(v1), v1.toDense());
// test conservative resize
{
std::vector<StorageIndex> inc;
if (rows > 3) inc.push_back(-3);
inc.push_back(0);
inc.push_back(3);
inc.push_back(1);
inc.push_back(10);
for (std::size_t i = 0; i < inc.size(); i++) {
StorageIndex incRows = inc[i];
SparseVectorType vec1(rows);
DenseVector refVec1 = DenseVector::Zero(rows);
initSparse<Scalar>(densityVec, refVec1, vec1);
vec1.conservativeResize(rows + incRows);
refVec1.conservativeResize(rows + incRows);
if (incRows > 0) refVec1.tail(incRows).setZero();
VERIFY_IS_APPROX(vec1, refVec1);
// Insert new values
if (incRows > 0) vec1.insert(vec1.rows() - 1) = refVec1(refVec1.rows() - 1) = 1;
VERIFY_IS_APPROX(vec1, refVec1);
}
}
// test sort
if (rows > 1) {
SparseVectorType vec1(rows);
DenseVector refVec1 = DenseVector::Zero(rows);
DenseIndexVector innerIndices(rows);
innerIndices.setLinSpaced(0, rows - 1);
std::random_device rd;
std::mt19937 g(rd());
std::shuffle(innerIndices.begin(), innerIndices.end(), g);
Index nz = internal::random<Index>(2, rows / 2);
for (Index k = 0; k < nz; k++) {
Index i = innerIndices[k];
Scalar val = internal::random<Scalar>();
refVec1.coeffRef(i) = val;
vec1.insert(i) = val;
}
vec1.template sortInnerIndices<std::greater<>>();
VERIFY_IS_APPROX(vec1, refVec1);
VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted<std::greater<>>(), 1);
VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted<std::less<>>(), 0);
vec1.template sortInnerIndices<std::less<>>();
VERIFY_IS_APPROX(vec1, refVec1);
VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted<std::greater<>>(), 0);
VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted<std::less<>>(), 1);
}
}
void test_pruning() {
using SparseVectorType = SparseVector<double, 0, int>;
SparseVectorType vec;
auto init_vec = [&]() {
;
vec.resize(10);
vec.insert(3) = 0.1;
vec.insert(5) = 1.0;
vec.insert(8) = -0.1;
vec.insert(9) = -0.2;
};
init_vec();
VERIFY_IS_EQUAL(vec.nonZeros(), 4);
VERIFY_IS_EQUAL(vec.prune(0.1, 1.0), 2);
VERIFY_IS_EQUAL(vec.nonZeros(), 2);
VERIFY_IS_EQUAL(vec.coeff(5), 1.0);
VERIFY_IS_EQUAL(vec.coeff(9), -0.2);
init_vec();
VERIFY_IS_EQUAL(vec.prune([](double v) { return v >= 0; }), 2);
VERIFY_IS_EQUAL(vec.nonZeros(), 2);
VERIFY_IS_EQUAL(vec.coeff(3), 0.1);
VERIFY_IS_EQUAL(vec.coeff(5), 1.0);
}
EIGEN_DECLARE_TEST(sparse_vector) {
for (int i = 0; i < g_repeat; i++) {
int r = Eigen::internal::random<int>(1, 500), c = Eigen::internal::random<int>(1, 500);
if (Eigen::internal::random<int>(0, 4) == 0) {
r = c; // check square matrices in 25% of tries
}
EIGEN_UNUSED_VARIABLE(r + c);
CALL_SUBTEST_1((sparse_vector<double, int>(8, 8)));
CALL_SUBTEST_2((sparse_vector<std::complex<double>, int>(r, c)));
CALL_SUBTEST_1((sparse_vector<double, long int>(r, c)));
CALL_SUBTEST_1((sparse_vector<double, short>(r, c)));
}
CALL_SUBTEST_1(test_pruning());
}