blob: a6ddf26147b3d9046e5668cc660a43704841f52d [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <iostream>
#include "common.h"
EIGEN_BLAS_FUNC(gemm)
(const char *opa, const char *opb, const int *m, const int *n, const int *k, const RealScalar *palpha,
const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc,
const int *ldc) {
// std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " <<
// *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n";
typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex,
Scalar *, DenseIndex, DenseIndex, Scalar, Eigen::internal::level3_blocking<Scalar, Scalar> &,
Eigen::internal::GemmParallelInfo<DenseIndex> *);
static const functype func[12] = {
// array index: NOTR | (NOTR << 2)
(internal::general_matrix_matrix_product<DenseIndex, Scalar, ColMajor, false, Scalar, ColMajor, false, ColMajor,
1>::run),
// array index: TR | (NOTR << 2)
(internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, false, Scalar, ColMajor, false, ColMajor,
1>::run),
// array index: ADJ | (NOTR << 2)
(internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false, ColMajor,
1>::run),
0,
// array index: NOTR | (TR << 2)
(internal::general_matrix_matrix_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, false, ColMajor,
1>::run),
// array index: TR | (TR << 2)
(internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, false, Scalar, RowMajor, false, ColMajor,
1>::run),
// array index: ADJ | (TR << 2)
(internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, RowMajor, false, ColMajor,
1>::run),
0,
// array index: NOTR | (ADJ << 2)
(internal::general_matrix_matrix_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj, ColMajor,
1>::run),
// array index: TR | (ADJ << 2)
(internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, false, Scalar, RowMajor, Conj, ColMajor,
1>::run),
// array index: ADJ | (ADJ << 2)
(internal::general_matrix_matrix_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, RowMajor, Conj, ColMajor,
1>::run),
0};
const Scalar *a = reinterpret_cast<const Scalar *>(pa);
const Scalar *b = reinterpret_cast<const Scalar *>(pb);
Scalar *c = reinterpret_cast<Scalar *>(pc);
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
Scalar beta = *reinterpret_cast<const Scalar *>(pbeta);
int info = 0;
if (OP(*opa) == INVALID)
info = 1;
else if (OP(*opb) == INVALID)
info = 2;
else if (*m < 0)
info = 3;
else if (*n < 0)
info = 4;
else if (*k < 0)
info = 5;
else if (*lda < std::max(1, (OP(*opa) == NOTR) ? *m : *k))
info = 8;
else if (*ldb < std::max(1, (OP(*opb) == NOTR) ? *k : *n))
info = 10;
else if (*ldc < std::max(1, *m))
info = 13;
if (info) return xerbla_(SCALAR_SUFFIX_UP "GEMM ", &info);
if (*m == 0 || *n == 0) return;
if (beta != Scalar(1)) {
if (beta == Scalar(0))
matrix(c, *m, *n, *ldc).setZero();
else
matrix(c, *m, *n, *ldc) *= beta;
}
if (*k == 0) return;
internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*m, *n, *k, 1, true);
int code = OP(*opa) | (OP(*opb) << 2);
func[code](*m, *n, *k, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking, 0);
}
EIGEN_BLAS_FUNC(trsm)
(const char *side, const char *uplo, const char *opa, const char *diag, const int *m, const int *n,
const RealScalar *palpha, const RealScalar *pa, const int *lda, RealScalar *pb, const int *ldb) {
// std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " "
// << *palpha << " " << *lda << " " << *ldb<< "\n";
typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex,
Eigen::internal::level3_blocking<Scalar, Scalar> &);
static const functype func[32] = {
// array index: NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | 0, false, ColMajor, ColMajor, 1>::run),
// array index: TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | 0, false, RowMajor, ColMajor, 1>::run),
// array index: ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | 0, Conj, RowMajor, ColMajor, 1>::run),
0,
// array index: NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | 0, false, ColMajor, ColMajor, 1>::run),
// array index: TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | 0, false, RowMajor, ColMajor, 1>::run),
// array index: ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | 0, Conj, RowMajor, ColMajor, 1>::run),
0,
// array index: NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | 0, false, ColMajor, ColMajor, 1>::run),
// array index: TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | 0, false, RowMajor, ColMajor, 1>::run),
// array index: ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | 0, Conj, RowMajor, ColMajor, 1>::run),
0,
// array index: NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | 0, false, ColMajor, ColMajor, 1>::run),
// array index: TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | 0, false, RowMajor, ColMajor, 1>::run),
// array index: ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | 0, Conj, RowMajor, ColMajor, 1>::run),
0,
// array index: NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | UnitDiag, false, ColMajor, ColMajor,
1>::run),
// array index: TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | UnitDiag, false, RowMajor, ColMajor,
1>::run),
// array index: ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | UnitDiag, Conj, RowMajor, ColMajor,
1>::run),
0,
// array index: NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | UnitDiag, false, ColMajor, ColMajor,
1>::run),
// array index: TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | UnitDiag, false, RowMajor, ColMajor,
1>::run),
// array index: ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | UnitDiag, Conj, RowMajor, ColMajor,
1>::run),
0,
// array index: NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Lower | UnitDiag, false, ColMajor, ColMajor,
1>::run),
// array index: TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | UnitDiag, false, RowMajor, ColMajor,
1>::run),
// array index: ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheLeft, Upper | UnitDiag, Conj, RowMajor, ColMajor,
1>::run),
0,
// array index: NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Lower | UnitDiag, false, ColMajor, ColMajor,
1>::run),
// array index: TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | UnitDiag, false, RowMajor, ColMajor,
1>::run),
// array index: ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)
(internal::triangular_solve_matrix<Scalar, DenseIndex, OnTheRight, Upper | UnitDiag, Conj, RowMajor, ColMajor,
1>::run),
0};
const Scalar *a = reinterpret_cast<const Scalar *>(pa);
Scalar *b = reinterpret_cast<Scalar *>(pb);
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
int info = 0;
if (SIDE(*side) == INVALID)
info = 1;
else if (UPLO(*uplo) == INVALID)
info = 2;
else if (OP(*opa) == INVALID)
info = 3;
else if (DIAG(*diag) == INVALID)
info = 4;
else if (*m < 0)
info = 5;
else if (*n < 0)
info = 6;
else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n))
info = 9;
else if (*ldb < std::max(1, *m))
info = 11;
if (info) return xerbla_(SCALAR_SUFFIX_UP "TRSM ", &info);
if (*m == 0 || *n == 0) return;
int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
if (SIDE(*side) == LEFT) {
internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *m, 1,
false);
func[code](*m, *n, a, *lda, b, 1, *ldb, blocking);
} else {
internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *n, 1,
false);
func[code](*n, *m, a, *lda, b, 1, *ldb, blocking);
}
if (alpha != Scalar(1)) matrix(b, *m, *n, *ldb) *= alpha;
}
// b = alpha*op(a)*b for side = 'L'or'l'
// b = alpha*b*op(a) for side = 'R'or'r'
EIGEN_BLAS_FUNC(trmm)
(const char *side, const char *uplo, const char *opa, const char *diag, const int *m, const int *n,
const RealScalar *palpha, const RealScalar *pa, const int *lda, RealScalar *pb, const int *ldb) {
// std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " "
// << *lda << " " << *ldb << " " << *palpha << "\n";
typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex,
Scalar *, DenseIndex, DenseIndex, const Scalar &,
internal::level3_blocking<Scalar, Scalar> &);
static const functype func[32] = {
// array index: NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, true, ColMajor, false, ColMajor, false,
ColMajor, 1>::run),
// array index: TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, true, RowMajor, false, ColMajor, false,
ColMajor, 1>::run),
// array index: ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, true, RowMajor, Conj, ColMajor, false,
ColMajor, 1>::run),
0,
// array index: NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, false, ColMajor, false, ColMajor,
false, ColMajor, 1>::run),
// array index: TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, false, ColMajor, false, RowMajor,
false, ColMajor, 1>::run),
// array index: ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, false, ColMajor, false, RowMajor, Conj,
ColMajor, 1>::run),
0,
// array index: NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, true, ColMajor, false, ColMajor, false,
ColMajor, 1>::run),
// array index: TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, true, RowMajor, false, ColMajor, false,
ColMajor, 1>::run),
// array index: ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, true, RowMajor, Conj, ColMajor, false,
ColMajor, 1>::run),
0,
// array index: NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | 0, false, ColMajor, false, ColMajor,
false, ColMajor, 1>::run),
// array index: TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, false, ColMajor, false, RowMajor,
false, ColMajor, 1>::run),
// array index: ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | 0, false, ColMajor, false, RowMajor, Conj,
ColMajor, 1>::run),
0,
// array index: NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, true, ColMajor, false, ColMajor,
false, ColMajor, 1>::run),
// array index: TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, true, RowMajor, false, ColMajor,
false, ColMajor, 1>::run),
// array index: ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, true, RowMajor, Conj, ColMajor,
false, ColMajor, 1>::run),
0,
// array index: NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, false, ColMajor, false,
ColMajor, false, ColMajor, 1>::run),
// array index: TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, false, ColMajor, false,
RowMajor, false, ColMajor, 1>::run),
// array index: ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, false, ColMajor, false,
RowMajor, Conj, ColMajor, 1>::run),
0,
// array index: NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, true, ColMajor, false, ColMajor,
false, ColMajor, 1>::run),
// array index: TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, true, RowMajor, false, ColMajor,
false, ColMajor, 1>::run),
// array index: ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, true, RowMajor, Conj, ColMajor,
false, ColMajor, 1>::run),
0,
// array index: NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Lower | UnitDiag, false, ColMajor, false,
ColMajor, false, ColMajor, 1>::run),
// array index: TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, false, ColMajor, false,
RowMajor, false, ColMajor, 1>::run),
// array index: ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)
(internal::product_triangular_matrix_matrix<Scalar, DenseIndex, Upper | UnitDiag, false, ColMajor, false,
RowMajor, Conj, ColMajor, 1>::run),
0};
const Scalar *a = reinterpret_cast<const Scalar *>(pa);
Scalar *b = reinterpret_cast<Scalar *>(pb);
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
int info = 0;
if (SIDE(*side) == INVALID)
info = 1;
else if (UPLO(*uplo) == INVALID)
info = 2;
else if (OP(*opa) == INVALID)
info = 3;
else if (DIAG(*diag) == INVALID)
info = 4;
else if (*m < 0)
info = 5;
else if (*n < 0)
info = 6;
else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n))
info = 9;
else if (*ldb < std::max(1, *m))
info = 11;
if (info) return xerbla_(SCALAR_SUFFIX_UP "TRMM ", &info);
int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
if (*m == 0 || *n == 0) return;
// FIXME find a way to avoid this copy
Matrix<Scalar, Dynamic, Dynamic, ColMajor> tmp = matrix(b, *m, *n, *ldb);
matrix(b, *m, *n, *ldb).setZero();
if (SIDE(*side) == LEFT) {
internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *m, 1,
false);
func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, 1, *ldb, alpha, blocking);
} else {
internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic, 4> blocking(*m, *n, *n, 1,
false);
func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, 1, *ldb, alpha, blocking);
}
}
// c = alpha*a*b + beta*c for side = 'L'or'l'
// c = alpha*b*a + beta*c for side = 'R'or'r
EIGEN_BLAS_FUNC(symm)
(const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha, const RealScalar *pa,
const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) {
// std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb
// << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n";
const Scalar *a = reinterpret_cast<const Scalar *>(pa);
const Scalar *b = reinterpret_cast<const Scalar *>(pb);
Scalar *c = reinterpret_cast<Scalar *>(pc);
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
Scalar beta = *reinterpret_cast<const Scalar *>(pbeta);
int info = 0;
if (SIDE(*side) == INVALID)
info = 1;
else if (UPLO(*uplo) == INVALID)
info = 2;
else if (*m < 0)
info = 3;
else if (*n < 0)
info = 4;
else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n))
info = 7;
else if (*ldb < std::max(1, *m))
info = 9;
else if (*ldc < std::max(1, *m))
info = 12;
if (info) return xerbla_(SCALAR_SUFFIX_UP "SYMM ", &info);
if (beta != Scalar(1)) {
if (beta == Scalar(0))
matrix(c, *m, *n, *ldc).setZero();
else
matrix(c, *m, *n, *ldc) *= beta;
}
if (*m == 0 || *n == 0) return;
int size = (SIDE(*side) == LEFT) ? (*m) : (*n);
#if ISCOMPLEX
// FIXME add support for symmetric complex matrix
Matrix<Scalar, Dynamic, Dynamic, ColMajor> matA(size, size);
if (UPLO(*uplo) == UP) {
matA.triangularView<Upper>() = matrix(a, size, size, *lda);
matA.triangularView<Lower>() = matrix(a, size, size, *lda).transpose();
} else if (UPLO(*uplo) == LO) {
matA.triangularView<Lower>() = matrix(a, size, size, *lda);
matA.triangularView<Upper>() = matrix(a, size, size, *lda).transpose();
}
if (SIDE(*side) == LEFT)
matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb);
else if (SIDE(*side) == RIGHT)
matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA;
#else
internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*m, *n, size, 1, false);
if (SIDE(*side) == LEFT)
if (UPLO(*uplo) == UP)
internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor, true, false, ColMajor, false, false, ColMajor,
1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking);
else if (UPLO(*uplo) == LO)
internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, true, false, ColMajor, false, false, ColMajor,
1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking);
else
return;
else if (SIDE(*side) == RIGHT)
if (UPLO(*uplo) == UP)
internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, false, false, RowMajor, true, false, ColMajor,
1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);
else if (UPLO(*uplo) == LO)
internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, false, false, ColMajor, true, false, ColMajor,
1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);
else
return;
else
return;
#endif
}
// c = alpha*a*a' + beta*c for op = 'N'or'n'
// c = alpha*a'*a + beta*c for op = 'T'or't','C'or'c'
EIGEN_BLAS_FUNC(syrk)
(const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, const RealScalar *pa,
const int *lda, const RealScalar *pbeta, RealScalar *pc, const int *ldc) {
// std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " "
// << *pbeta << " " << *ldc << "\n";
#if !ISCOMPLEX
typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *,
DenseIndex, DenseIndex, const Scalar &, internal::level3_blocking<Scalar, Scalar> &);
static const functype func[8] = {
// array index: NOTR | (UP << 2)
(internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj,
ColMajor, 1, Upper>::run),
// array index: TR | (UP << 2)
(internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, false, Scalar, ColMajor, Conj,
ColMajor, 1, Upper>::run),
// array index: ADJ | (UP << 2)
(internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false,
ColMajor, 1, Upper>::run),
0,
// array index: NOTR | (LO << 2)
(internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj,
ColMajor, 1, Lower>::run),
// array index: TR | (LO << 2)
(internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, false, Scalar, ColMajor, Conj,
ColMajor, 1, Lower>::run),
// array index: ADJ | (LO << 2)
(internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false,
ColMajor, 1, Lower>::run),
0};
#endif
const Scalar *a = reinterpret_cast<const Scalar *>(pa);
Scalar *c = reinterpret_cast<Scalar *>(pc);
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
Scalar beta = *reinterpret_cast<const Scalar *>(pbeta);
int info = 0;
if (UPLO(*uplo) == INVALID)
info = 1;
else if (OP(*op) == INVALID || (ISCOMPLEX && OP(*op) == ADJ))
info = 2;
else if (*n < 0)
info = 3;
else if (*k < 0)
info = 4;
else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k))
info = 7;
else if (*ldc < std::max(1, *n))
info = 10;
if (info) return xerbla_(SCALAR_SUFFIX_UP "SYRK ", &info);
if (beta != Scalar(1)) {
if (UPLO(*uplo) == UP)
if (beta == Scalar(0))
matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
else
matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
else if (beta == Scalar(0))
matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
else
matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
}
if (*n == 0 || *k == 0) return;
#if ISCOMPLEX
// FIXME add support for symmetric complex matrix
if (UPLO(*uplo) == UP) {
if (OP(*op) == NOTR)
matrix(c, *n, *n, *ldc).triangularView<Upper>() +=
alpha * matrix(a, *n, *k, *lda) * matrix(a, *n, *k, *lda).transpose();
else
matrix(c, *n, *n, *ldc).triangularView<Upper>() +=
alpha * matrix(a, *k, *n, *lda).transpose() * matrix(a, *k, *n, *lda);
} else {
if (OP(*op) == NOTR)
matrix(c, *n, *n, *ldc).triangularView<Lower>() +=
alpha * matrix(a, *n, *k, *lda) * matrix(a, *n, *k, *lda).transpose();
else
matrix(c, *n, *n, *ldc).triangularView<Lower>() +=
alpha * matrix(a, *k, *n, *lda).transpose() * matrix(a, *k, *n, *lda);
}
#else
internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*n, *n, *k, 1, false);
int code = OP(*op) | (UPLO(*uplo) << 2);
func[code](*n, *k, a, *lda, a, *lda, c, 1, *ldc, alpha, blocking);
#endif
}
// c = alpha*a*b' + alpha*b*a' + beta*c for op = 'N'or'n'
// c = alpha*a'*b + alpha*b'*a + beta*c for op = 'T'or't'
EIGEN_BLAS_FUNC(syr2k)
(const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, const RealScalar *pa,
const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) {
const Scalar *a = reinterpret_cast<const Scalar *>(pa);
const Scalar *b = reinterpret_cast<const Scalar *>(pb);
Scalar *c = reinterpret_cast<Scalar *>(pc);
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
Scalar beta = *reinterpret_cast<const Scalar *>(pbeta);
// std::cerr << "in syr2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " "
// << *ldb << " " << beta << " " << *ldc << "\n";
int info = 0;
if (UPLO(*uplo) == INVALID)
info = 1;
else if (OP(*op) == INVALID || (ISCOMPLEX && OP(*op) == ADJ))
info = 2;
else if (*n < 0)
info = 3;
else if (*k < 0)
info = 4;
else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k))
info = 7;
else if (*ldb < std::max(1, (OP(*op) == NOTR) ? *n : *k))
info = 9;
else if (*ldc < std::max(1, *n))
info = 12;
if (info) return xerbla_(SCALAR_SUFFIX_UP "SYR2K", &info);
if (beta != Scalar(1)) {
if (UPLO(*uplo) == UP)
if (beta == Scalar(0))
matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
else
matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
else if (beta == Scalar(0))
matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
else
matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
}
if (*k == 0) return;
if (OP(*op) == NOTR) {
if (UPLO(*uplo) == UP) {
matrix(c, *n, *n, *ldc).triangularView<Upper>() +=
alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).transpose() +
alpha * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).transpose();
} else if (UPLO(*uplo) == LO)
matrix(c, *n, *n, *ldc).triangularView<Lower>() +=
alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).transpose() +
alpha * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).transpose();
} else if (OP(*op) == TR || OP(*op) == ADJ) {
if (UPLO(*uplo) == UP)
matrix(c, *n, *n, *ldc).triangularView<Upper>() +=
alpha * matrix(a, *k, *n, *lda).transpose() * matrix(b, *k, *n, *ldb) +
alpha * matrix(b, *k, *n, *ldb).transpose() * matrix(a, *k, *n, *lda);
else if (UPLO(*uplo) == LO)
matrix(c, *n, *n, *ldc).triangularView<Lower>() +=
alpha * matrix(a, *k, *n, *lda).transpose() * matrix(b, *k, *n, *ldb) +
alpha * matrix(b, *k, *n, *ldb).transpose() * matrix(a, *k, *n, *lda);
}
}
#if ISCOMPLEX
// c = alpha*a*b + beta*c for side = 'L'or'l'
// c = alpha*b*a + beta*c for side = 'R'or'r
EIGEN_BLAS_FUNC(hemm)
(const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha, const RealScalar *pa,
const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) {
const Scalar *a = reinterpret_cast<const Scalar *>(pa);
const Scalar *b = reinterpret_cast<const Scalar *>(pb);
Scalar *c = reinterpret_cast<Scalar *>(pc);
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
Scalar beta = *reinterpret_cast<const Scalar *>(pbeta);
// std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " "
// << beta << " " << *ldc << "\n";
int info = 0;
if (SIDE(*side) == INVALID)
info = 1;
else if (UPLO(*uplo) == INVALID)
info = 2;
else if (*m < 0)
info = 3;
else if (*n < 0)
info = 4;
else if (*lda < std::max(1, (SIDE(*side) == LEFT) ? *m : *n))
info = 7;
else if (*ldb < std::max(1, *m))
info = 9;
else if (*ldc < std::max(1, *m))
info = 12;
if (info) return xerbla_(SCALAR_SUFFIX_UP "HEMM ", &info);
if (beta == Scalar(0))
matrix(c, *m, *n, *ldc).setZero();
else if (beta != Scalar(1))
matrix(c, *m, *n, *ldc) *= beta;
if (*m == 0 || *n == 0) return;
int size = (SIDE(*side) == LEFT) ? (*m) : (*n);
internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*m, *n, size, 1, false);
if (SIDE(*side) == LEFT) {
if (UPLO(*uplo) == UP)
internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor, true, Conj, ColMajor, false, false, ColMajor,
1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking);
else if (UPLO(*uplo) == LO)
internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, true, false, ColMajor, false, false, ColMajor,
1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking);
else
return;
} else if (SIDE(*side) == RIGHT) {
if (UPLO(*uplo) == UP)
matrix(c, *m, *n, *ldc) +=
alpha * matrix(b, *m, *n, *ldb) *
matrix(a, *n, *n, *lda)
.selfadjointView<Upper>(); /*internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false,
RowMajor,true,Conj, ColMajor, 1>
::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);*/
else if (UPLO(*uplo) == LO)
internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor, false, false, ColMajor, true, false, ColMajor,
1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);
else
return;
} else {
return;
}
}
// c = alpha*a*conj(a') + beta*c for op = 'N'or'n'
// c = alpha*conj(a')*a + beta*c for op = 'C'or'c'
EIGEN_BLAS_FUNC(herk)
(const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, const RealScalar *pa,
const int *lda, const RealScalar *pbeta, RealScalar *pc, const int *ldc) {
// std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " "
// << *pbeta << " " << *ldc << "\n";
typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *,
DenseIndex, DenseIndex, const Scalar &, Eigen::internal::level3_blocking<Scalar, Scalar> &);
static const functype func[8] = {
// array index: NOTR | (UP << 2)
(internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj,
ColMajor, 1, Upper>::run),
0,
// array index: ADJ | (UP << 2)
(internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false,
ColMajor, 1, Upper>::run),
0,
// array index: NOTR | (LO << 2)
(internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, ColMajor, false, Scalar, RowMajor, Conj,
ColMajor, 1, Lower>::run),
0,
// array index: ADJ | (LO << 2)
(internal::general_matrix_matrix_triangular_product<DenseIndex, Scalar, RowMajor, Conj, Scalar, ColMajor, false,
ColMajor, 1, Lower>::run),
0};
const Scalar *a = reinterpret_cast<const Scalar *>(pa);
Scalar *c = reinterpret_cast<Scalar *>(pc);
RealScalar alpha = *palpha;
RealScalar beta = *pbeta;
// std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " <<
// beta << " " << *ldc << "\n";
int info = 0;
if (UPLO(*uplo) == INVALID)
info = 1;
else if ((OP(*op) == INVALID) || (OP(*op) == TR))
info = 2;
else if (*n < 0)
info = 3;
else if (*k < 0)
info = 4;
else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k))
info = 7;
else if (*ldc < std::max(1, *n))
info = 10;
if (info) return xerbla_(SCALAR_SUFFIX_UP "HERK ", &info);
int code = OP(*op) | (UPLO(*uplo) << 2);
if (beta != RealScalar(1)) {
if (UPLO(*uplo) == UP)
if (beta == Scalar(0))
matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
else
matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
else if (beta == Scalar(0))
matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
else
matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
if (beta != Scalar(0)) {
matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
}
}
if (*k > 0 && alpha != RealScalar(0)) {
internal::gemm_blocking_space<ColMajor, Scalar, Scalar, Dynamic, Dynamic, Dynamic> blocking(*n, *n, *k, 1, false);
func[code](*n, *k, a, *lda, a, *lda, c, 1, *ldc, alpha, blocking);
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
}
}
// c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c, for op = 'N'or'n'
// c = alpha*conj(a')*b + conj(alpha)*conj(b')*a + beta*c, for op = 'C'or'c'
EIGEN_BLAS_FUNC(her2k)
(const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, const RealScalar *pa,
const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) {
const Scalar *a = reinterpret_cast<const Scalar *>(pa);
const Scalar *b = reinterpret_cast<const Scalar *>(pb);
Scalar *c = reinterpret_cast<Scalar *>(pc);
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
RealScalar beta = *pbeta;
// std::cerr << "in her2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " "
// << *ldb << " " << beta << " " << *ldc << "\n";
int info = 0;
if (UPLO(*uplo) == INVALID)
info = 1;
else if ((OP(*op) == INVALID) || (OP(*op) == TR))
info = 2;
else if (*n < 0)
info = 3;
else if (*k < 0)
info = 4;
else if (*lda < std::max(1, (OP(*op) == NOTR) ? *n : *k))
info = 7;
else if (*ldb < std::max(1, (OP(*op) == NOTR) ? *n : *k))
info = 9;
else if (*ldc < std::max(1, *n))
info = 12;
if (info) return xerbla_(SCALAR_SUFFIX_UP "HER2K", &info);
if (beta != RealScalar(1)) {
if (UPLO(*uplo) == UP)
if (beta == Scalar(0))
matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
else
matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
else if (beta == Scalar(0))
matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
else
matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
if (beta != Scalar(0)) {
matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
}
} else if (*k > 0 && alpha != Scalar(0))
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
if (*k == 0) return;
if (OP(*op) == NOTR) {
if (UPLO(*uplo) == UP) {
matrix(c, *n, *n, *ldc).triangularView<Upper>() +=
alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).adjoint() +
numext::conj(alpha) * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).adjoint();
} else if (UPLO(*uplo) == LO)
matrix(c, *n, *n, *ldc).triangularView<Lower>() +=
alpha * matrix(a, *n, *k, *lda) * matrix(b, *n, *k, *ldb).adjoint() +
numext::conj(alpha) * matrix(b, *n, *k, *ldb) * matrix(a, *n, *k, *lda).adjoint();
} else if (OP(*op) == ADJ) {
if (UPLO(*uplo) == UP)
matrix(c, *n, *n, *ldc).triangularView<Upper>() +=
alpha * matrix(a, *k, *n, *lda).adjoint() * matrix(b, *k, *n, *ldb) +
numext::conj(alpha) * matrix(b, *k, *n, *ldb).adjoint() * matrix(a, *k, *n, *lda);
else if (UPLO(*uplo) == LO)
matrix(c, *n, *n, *ldc).triangularView<Lower>() +=
alpha * matrix(a, *k, *n, *lda).adjoint() * matrix(b, *k, *n, *ldb) +
numext::conj(alpha) * matrix(b, *k, *n, *ldb).adjoint() * matrix(a, *k, *n, *lda);
}
}
#endif // ISCOMPLEX