| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include <vector> |
| #include "main.h" |
| #include "random_without_cast_overflow.h" |
| |
| // suppress annoying unsigned integer warnings |
| template <typename Scalar, bool IsSigned = NumTraits<Scalar>::IsSigned> |
| struct negative_or_zero_impl { |
| static Scalar run(const Scalar& a) { return -a; } |
| }; |
| template <typename Scalar> |
| struct negative_or_zero_impl<Scalar, false> { |
| static Scalar run(const Scalar&) { return 0; } |
| }; |
| template <typename Scalar> |
| Scalar negative_or_zero(const Scalar& a) { |
| return negative_or_zero_impl<Scalar>::run(a); |
| } |
| |
| template <typename Scalar, std::enable_if_t<NumTraits<Scalar>::IsInteger, int> = 0> |
| std::vector<Scalar> special_values() { |
| const Scalar zero = Scalar(0); |
| const Scalar one = Scalar(1); |
| const Scalar two = Scalar(2); |
| const Scalar three = Scalar(3); |
| const Scalar min = (std::numeric_limits<Scalar>::min)(); |
| const Scalar max = (std::numeric_limits<Scalar>::max)(); |
| return {zero, min, one, two, three, max}; |
| } |
| |
| template <typename Scalar, std::enable_if_t<!NumTraits<Scalar>::IsInteger, int> = 0> |
| std::vector<Scalar> special_values() { |
| const Scalar zero = Scalar(0); |
| const Scalar eps = Eigen::NumTraits<Scalar>::epsilon(); |
| const Scalar one_half = Scalar(0.5); |
| const Scalar one = Scalar(1); |
| const Scalar two = Scalar(2); |
| const Scalar three = Scalar(3); |
| const Scalar sqrt_half = Scalar(std::sqrt(0.5)); |
| const Scalar sqrt2 = Scalar(std::sqrt(2)); |
| const Scalar inf = Eigen::NumTraits<Scalar>::infinity(); |
| const Scalar nan = Eigen::NumTraits<Scalar>::quiet_NaN(); |
| const Scalar denorm_min = EIGEN_ARCH_ARM ? zero : std::numeric_limits<Scalar>::denorm_min(); |
| const Scalar min = (std::numeric_limits<Scalar>::min)(); |
| const Scalar max = (std::numeric_limits<Scalar>::max)(); |
| const Scalar max_exp = (static_cast<Scalar>(int(Eigen::NumTraits<Scalar>::max_exponent())) * Scalar(EIGEN_LN2)) / eps; |
| return {zero, denorm_min, min, eps, sqrt_half, one_half, one, sqrt2, two, three, max_exp, max, inf, nan}; |
| } |
| |
| template <typename Scalar> |
| void special_value_pairs(Array<Scalar, Dynamic, Dynamic>& x, Array<Scalar, Dynamic, Dynamic>& y) { |
| std::vector<Scalar> abs_vals = special_values<Scalar>(); |
| const Index abs_cases = (Index)abs_vals.size(); |
| const Index num_cases = 2 * abs_cases * 2 * abs_cases; |
| // ensure both vectorized and non-vectorized paths taken |
| const Index num_repeats = 2 * (Index)internal::packet_traits<Scalar>::size + 1; |
| x.resize(num_repeats, num_cases); |
| y.resize(num_repeats, num_cases); |
| int count = 0; |
| for (Index i = 0; i < abs_cases; ++i) { |
| const Scalar abs_x = abs_vals[i]; |
| for (Index sign_x = 0; sign_x < 2; ++sign_x) { |
| Scalar x_case = sign_x == 0 ? -abs_x : abs_x; |
| for (Index j = 0; j < abs_cases; ++j) { |
| const Scalar abs_y = abs_vals[j]; |
| for (Index sign_y = 0; sign_y < 2; ++sign_y) { |
| Scalar y_case = sign_y == 0 ? -abs_y : abs_y; |
| for (Index repeat = 0; repeat < num_repeats; ++repeat) { |
| x(repeat, count) = x_case; |
| y(repeat, count) = y_case; |
| } |
| ++count; |
| } |
| } |
| } |
| } |
| } |
| |
| template <typename Scalar, typename Fn, typename RefFn> |
| void binary_op_test(std::string name, Fn fun, RefFn ref) { |
| const Scalar tol = test_precision<Scalar>(); |
| Array<Scalar, Dynamic, Dynamic> lhs; |
| Array<Scalar, Dynamic, Dynamic> rhs; |
| special_value_pairs(lhs, rhs); |
| |
| Array<Scalar, Dynamic, Dynamic> actual = fun(lhs, rhs); |
| bool all_pass = true; |
| for (Index i = 0; i < lhs.rows(); ++i) { |
| for (Index j = 0; j < lhs.cols(); ++j) { |
| Scalar e = static_cast<Scalar>(ref(lhs(i, j), rhs(i, j))); |
| Scalar a = actual(i, j); |
| #if EIGEN_ARCH_ARM |
| // Work around NEON flush-to-zero mode. |
| // If ref returns a subnormal value and Eigen returns 0, then skip the test. |
| if (a == Scalar(0) && (e > -(std::numeric_limits<Scalar>::min)() && e < (std::numeric_limits<Scalar>::min)()) && |
| (e <= -std::numeric_limits<Scalar>::denorm_min() || e >= std::numeric_limits<Scalar>::denorm_min())) { |
| continue; |
| } |
| #endif |
| bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || |
| ((numext::isnan)(a) && (numext::isnan)(e)); |
| if ((a == a) && (e == e)) success &= (bool)numext::signbit(e) == (bool)numext::signbit(a); |
| all_pass &= success; |
| if (!success) { |
| std::cout << name << "(" << lhs(i, j) << "," << rhs(i, j) << ") = " << a << " != " << e << std::endl; |
| } |
| } |
| } |
| VERIFY(all_pass); |
| } |
| |
| #define BINARY_FUNCTOR_TEST_ARGS(fun) \ |
| #fun, [](const auto& x_, const auto& y_) { return (Eigen::fun)(x_, y_); }, \ |
| [](const auto& x_, const auto& y_) { return (std::fun)(x_, y_); } |
| |
| template <typename Scalar> |
| void binary_ops_test() { |
| binary_op_test<Scalar>(BINARY_FUNCTOR_TEST_ARGS(pow)); |
| #ifndef EIGEN_COMP_MSVC |
| binary_op_test<Scalar>(BINARY_FUNCTOR_TEST_ARGS(atan2)); |
| #else |
| binary_op_test<Scalar>( |
| "atan2", [](const auto& x, const auto& y) { return Eigen::atan2(x, y); }, |
| [](Scalar x, Scalar y) { |
| auto t = Scalar(std::atan2(x, y)); |
| // Work around MSVC return value on underflow. |
| // |atan(y/x)| is bounded above by |y/x|, so on underflow return y/x according to POSIX spec. |
| // MSVC otherwise returns denorm_min. |
| if (EIGEN_PREDICT_FALSE(std::abs(t) == std::numeric_limits<decltype(t)>::denorm_min())) { |
| return x / y; |
| } |
| return t; |
| }); |
| #endif |
| } |
| |
| template <typename Scalar, typename Fn, typename RefFn> |
| void unary_op_test(std::string name, Fn fun, RefFn ref) { |
| const Scalar tol = test_precision<Scalar>(); |
| auto values = special_values<Scalar>(); |
| Map<Array<Scalar, Dynamic, 1>> valuesMap(values.data(), values.size()); |
| |
| Array<Scalar, Dynamic, Dynamic> actual = fun(valuesMap); |
| bool all_pass = true; |
| for (Index i = 0; i < valuesMap.size(); ++i) { |
| Scalar e = static_cast<Scalar>(ref(valuesMap(i))); |
| Scalar a = actual(i); |
| bool success = (a == e) || ((numext::isfinite)(e) && internal::isApprox(a, e, tol)) || |
| ((numext::isnan)(a) && (numext::isnan)(e)); |
| if ((a == a) && (e == e)) success &= (bool)numext::signbit(e) == (bool)numext::signbit(a); |
| all_pass &= success; |
| if (!success) { |
| std::cout << name << "(" << valuesMap(i) << ") = " << a << " != " << e << std::endl; |
| } |
| } |
| VERIFY(all_pass); |
| } |
| |
| #define UNARY_FUNCTOR_TEST_ARGS(fun) \ |
| #fun, [](const auto& x_) { return (Eigen::fun)(x_); }, [](const auto& y_) { return (std::fun)(y_); } |
| |
| template <typename Scalar> |
| void unary_ops_test() { |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(sqrt)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(cbrt)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(exp)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(log)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(sin)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(cos)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(tan)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(asin)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(acos)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(atan)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(sinh)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(cosh)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(tanh)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(asinh)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(acosh)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(atanh)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(rint)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(floor)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(ceil)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(round)); |
| unary_op_test<Scalar>(UNARY_FUNCTOR_TEST_ARGS(trunc)); |
| /* FIXME: Enable when the behavior of rsqrt on denormals for half and double is fixed. |
| unary_op_test<Scalar>("rsqrt", |
| [](const auto& x) { return Eigen::rsqrt(x); }, |
| [](Scalar x) { |
| if (x >= 0 && x < (std::numeric_limits<Scalar>::min)()) { |
| // rsqrt return +inf for positive subnormals. |
| return NumTraits<Scalar>::infinity(); |
| } else { |
| return Scalar(std::sqrt(Scalar(1)/x)); |
| } |
| }); |
| */ |
| } |
| |
| template <typename Base, typename Exponent, bool ExpIsInteger = NumTraits<Exponent>::IsInteger> |
| struct ref_pow { |
| static Base run(Base base, Exponent exponent) { |
| EIGEN_USING_STD(pow); |
| return static_cast<Base>(pow(base, static_cast<Base>(exponent))); |
| } |
| }; |
| |
| template <typename Base, typename Exponent> |
| struct ref_pow<Base, Exponent, true> { |
| static Base run(Base base, Exponent exponent) { |
| EIGEN_USING_STD(pow); |
| return static_cast<Base>(pow(base, exponent)); |
| } |
| }; |
| |
| template <typename Exponent, bool ExpIsInteger = NumTraits<Exponent>::IsInteger> |
| struct pow_helper { |
| static bool is_integer_impl(const Exponent& exp) { return (numext::isfinite)(exp) && exp == numext::floor(exp); } |
| static bool is_odd_impl(const Exponent& exp) { |
| Exponent exp_div_2 = exp / Exponent(2); |
| Exponent floor_exp_div_2 = numext::floor(exp_div_2); |
| return exp_div_2 != floor_exp_div_2; |
| } |
| }; |
| template <typename Exponent> |
| struct pow_helper<Exponent, true> { |
| static bool is_integer_impl(const Exponent&) { return true; } |
| static bool is_odd_impl(const Exponent& exp) { return exp % 2 != 0; } |
| }; |
| template <typename Exponent> |
| bool is_integer(const Exponent& exp) { |
| return pow_helper<Exponent>::is_integer_impl(exp); |
| } |
| template <typename Exponent> |
| bool is_odd(const Exponent& exp) { |
| return pow_helper<Exponent>::is_odd_impl(exp); |
| } |
| |
| template <typename Base, typename Exponent> |
| void float_pow_test_impl() { |
| const Base tol = test_precision<Base>(); |
| std::vector<Base> abs_base_vals = special_values<Base>(); |
| std::vector<Exponent> abs_exponent_vals = special_values<Exponent>(); |
| for (int i = 0; i < 100; i++) { |
| abs_base_vals.push_back(internal::random<Base>(Base(0), Base(10))); |
| abs_exponent_vals.push_back(internal::random<Exponent>(Exponent(0), Exponent(10))); |
| } |
| const Index num_repeats = internal::packet_traits<Base>::size + 1; |
| ArrayX<Base> bases(num_repeats), eigenPow(num_repeats); |
| bool all_pass = true; |
| for (Base abs_base : abs_base_vals) |
| for (Base base : {negative_or_zero(abs_base), abs_base}) { |
| bases.setConstant(base); |
| for (Exponent abs_exponent : abs_exponent_vals) { |
| for (Exponent exponent : {negative_or_zero(abs_exponent), abs_exponent}) { |
| eigenPow = bases.pow(exponent); |
| for (Index j = 0; j < num_repeats; j++) { |
| Base e = ref_pow<Base, Exponent>::run(bases(j), exponent); |
| if (is_integer(exponent)) { |
| // std::pow may return an incorrect result for a very large integral exponent |
| // if base is negative and the exponent is odd, then the result must be negative |
| // if std::pow returns otherwise, flip the sign |
| bool exp_is_odd = is_odd(exponent); |
| bool base_is_neg = !(numext::isnan)(base) && (bool)numext::signbit(base); |
| bool result_is_neg = exp_is_odd && base_is_neg; |
| bool ref_is_neg = !(numext::isnan)(e) && (bool)numext::signbit(e); |
| bool flip_sign = result_is_neg != ref_is_neg; |
| if (flip_sign) e = -e; |
| } |
| |
| Base a = eigenPow(j); |
| #ifdef EIGEN_COMP_MSVC |
| // Work around MSVC return value on underflow. |
| // if std::pow returns 0 and Eigen returns a denormalized value, then skip the test |
| int eigen_fpclass = std::fpclassify(a); |
| if (e == Base(0) && eigen_fpclass == FP_SUBNORMAL) continue; |
| #endif |
| |
| #ifdef EIGEN_VECTORIZE_NEON |
| // Work around NEON flush-to-zero mode |
| // if std::pow returns denormalized value and Eigen returns 0, then skip the test |
| int ref_fpclass = std::fpclassify(e); |
| if (a == Base(0) && ref_fpclass == FP_SUBNORMAL) continue; |
| #endif |
| |
| bool both_nan = (numext::isnan)(a) && (numext::isnan)(e); |
| bool exact_or_approx = (a == e) || internal::isApprox(a, e, tol); |
| bool same_sign = (bool)numext::signbit(e) == (bool)numext::signbit(a); |
| bool success = both_nan || (exact_or_approx && same_sign); |
| all_pass &= success; |
| if (!success) { |
| std::cout << "pow(" << bases(j) << "," << exponent << ") = " << a << " != " << e << std::endl; |
| } |
| } |
| } |
| } |
| } |
| VERIFY(all_pass); |
| } |
| |
| template <typename Scalar, typename ScalarExponent> |
| Scalar calc_overflow_threshold(const ScalarExponent exponent) { |
| EIGEN_USING_STD(exp2); |
| EIGEN_USING_STD(log2); |
| EIGEN_STATIC_ASSERT((NumTraits<Scalar>::digits() < 2 * NumTraits<double>::digits()), BASE_TYPE_IS_TOO_BIG); |
| |
| if (exponent < 2) |
| return NumTraits<Scalar>::highest(); |
| else { |
| // base^e <= highest ==> base <= 2^(log2(highest)/e) |
| // For floating-point types, consider the bound for integer values that can be reproduced exactly = 2 ^ digits |
| double highest_bits = numext::mini(static_cast<double>(NumTraits<Scalar>::digits()), |
| static_cast<double>(log2(NumTraits<Scalar>::highest()))); |
| return static_cast<Scalar>(numext::floor(exp2(highest_bits / static_cast<double>(exponent)))); |
| } |
| } |
| |
| template <typename Base, typename Exponent> |
| void test_exponent(Exponent exponent) { |
| EIGEN_STATIC_ASSERT(NumTraits<Base>::IsInteger, THIS TEST IS ONLY INTENDED FOR BASE INTEGER TYPES) |
| const Base max_abs_bases = static_cast<Base>(10000); |
| // avoid integer overflow in Base type |
| Base threshold = calc_overflow_threshold<Base, Exponent>(numext::abs(exponent)); |
| // avoid numbers that can't be verified with std::pow |
| double double_threshold = calc_overflow_threshold<double, Exponent>(numext::abs(exponent)); |
| // use the lesser of these two thresholds |
| Base testing_threshold = |
| static_cast<double>(threshold) < double_threshold ? threshold : static_cast<Base>(double_threshold); |
| // test both vectorized and non-vectorized code paths |
| const Index array_size = 2 * internal::packet_traits<Base>::size + 1; |
| |
| Base max_base = numext::mini(testing_threshold, max_abs_bases); |
| Base min_base = negative_or_zero(max_base); |
| |
| ArrayX<Base> x(array_size), y(array_size); |
| bool all_pass = true; |
| for (Base base = min_base; base <= max_base; base++) { |
| if (exponent < 0 && base == 0) continue; |
| x.setConstant(base); |
| y = x.pow(exponent); |
| for (Base a : y) { |
| Base e = ref_pow<Base, Exponent>::run(base, exponent); |
| bool pass = (a == e); |
| all_pass &= pass; |
| if (!pass) { |
| std::cout << "pow(" << base << "," << exponent << ") = " << a << " != " << e << std::endl; |
| } |
| } |
| } |
| VERIFY(all_pass); |
| } |
| |
| template <typename Base, typename Exponent> |
| void int_pow_test_impl() { |
| Exponent max_exponent = static_cast<Exponent>(NumTraits<Base>::digits()); |
| Exponent min_exponent = negative_or_zero(max_exponent); |
| |
| for (Exponent exponent = min_exponent; exponent < max_exponent; ++exponent) { |
| test_exponent<Base, Exponent>(exponent); |
| } |
| } |
| |
| void float_pow_test() { |
| float_pow_test_impl<float, float>(); |
| float_pow_test_impl<double, double>(); |
| } |
| |
| void mixed_pow_test() { |
| // The following cases will test promoting a smaller exponent type |
| // to a wider base type. |
| float_pow_test_impl<double, int>(); |
| float_pow_test_impl<double, float>(); |
| float_pow_test_impl<float, half>(); |
| float_pow_test_impl<double, half>(); |
| float_pow_test_impl<float, bfloat16>(); |
| float_pow_test_impl<double, bfloat16>(); |
| |
| // Although in the following cases the exponent cannot be represented exactly |
| // in the base type, we do not perform a conversion, but implement |
| // the operation using repeated squaring. |
| float_pow_test_impl<float, int>(); |
| float_pow_test_impl<double, long long>(); |
| |
| // The following cases will test promoting a wider exponent type |
| // to a narrower base type. This should compile but would generate a |
| // deprecation warning: |
| // unary_pow_test<float, double>(); |
| } |
| |
| void int_pow_test() { |
| int_pow_test_impl<int, int>(); |
| int_pow_test_impl<unsigned int, unsigned int>(); |
| int_pow_test_impl<long long, long long>(); |
| int_pow_test_impl<unsigned long long, unsigned long long>(); |
| |
| // Although in the following cases the exponent cannot be represented exactly |
| // in the base type, we do not perform a conversion, but implement the |
| // operation using repeated squaring. |
| int_pow_test_impl<long long, int>(); |
| int_pow_test_impl<int, unsigned int>(); |
| int_pow_test_impl<unsigned int, int>(); |
| int_pow_test_impl<long long, unsigned long long>(); |
| int_pow_test_impl<unsigned long long, long long>(); |
| int_pow_test_impl<long long, int>(); |
| } |
| |
| namespace Eigen { |
| namespace internal { |
| template <typename Scalar> |
| struct test_signbit_op { |
| Scalar constexpr operator()(const Scalar& a) const { return numext::signbit(a); } |
| template <typename Packet> |
| inline Packet packetOp(const Packet& a) const { |
| return psignbit(a); |
| } |
| }; |
| template <typename Scalar> |
| struct functor_traits<test_signbit_op<Scalar>> { |
| enum { Cost = 1, PacketAccess = true }; // todo: define HasSignbit flag |
| }; |
| } // namespace internal |
| } // namespace Eigen |
| |
| template <typename Scalar> |
| void signbit_test() { |
| const size_t size = 100 * internal::packet_traits<Scalar>::size; |
| ArrayX<Scalar> x(size), y(size); |
| x.setRandom(); |
| std::vector<Scalar> special_vals = special_values<Scalar>(); |
| for (size_t i = 0; i < special_vals.size(); i++) { |
| x(2 * i + 0) = special_vals[i]; |
| x(2 * i + 1) = negative_or_zero(special_vals[i]); |
| } |
| y = x.unaryExpr(internal::test_signbit_op<Scalar>()); |
| |
| bool all_pass = true; |
| for (size_t i = 0; i < size; i++) { |
| const Scalar ref_val = numext::signbit(x(i)); |
| bool not_same = internal::predux_any(internal::bitwise_helper<Scalar>::bitwise_xor(ref_val, y(i))); |
| if (not_same) std::cout << "signbit(" << x(i) << ") != " << y(i) << "\n"; |
| all_pass = all_pass && !not_same; |
| } |
| |
| VERIFY(all_pass); |
| } |
| void signbit_tests() { |
| signbit_test<float>(); |
| signbit_test<double>(); |
| signbit_test<Eigen::half>(); |
| signbit_test<Eigen::bfloat16>(); |
| signbit_test<int8_t>(); |
| signbit_test<int16_t>(); |
| signbit_test<int32_t>(); |
| signbit_test<int64_t>(); |
| } |
| |
| template <typename ArrayType> |
| void array_generic(const ArrayType& m) { |
| typedef typename ArrayType::Scalar Scalar; |
| typedef typename ArrayType::RealScalar RealScalar; |
| typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; |
| typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols); |
| if (NumTraits<RealScalar>::IsInteger && NumTraits<RealScalar>::IsSigned && !NumTraits<Scalar>::IsComplex) { |
| // Here we cap the size of the values in m1 such that pow(3)/cube() |
| // doesn't overflow and result in undefined behavior. Notice that because |
| // pow(int, int) promotes its inputs and output to double (according to |
| // the C++ standard), we have to make sure that the result fits in 53 bits |
| // for int64, |
| RealScalar max_val = |
| numext::mini(RealScalar(std::cbrt(NumTraits<RealScalar>::highest())), RealScalar(std::cbrt(1LL << 53))) / 2; |
| m1.array() = (m1.abs().array() <= max_val).select(m1, Scalar(max_val)); |
| } |
| ArrayType m2 = ArrayType::Random(rows, cols), m3(rows, cols); |
| ArrayType m4 = m1; // copy constructor |
| VERIFY_IS_APPROX(m1, m4); |
| |
| ColVectorType cv1 = ColVectorType::Random(rows); |
| RowVectorType rv1 = RowVectorType::Random(cols); |
| |
| Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(); |
| |
| // scalar addition |
| VERIFY_IS_APPROX(m1 + s1, s1 + m1); |
| VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows, cols, s1) + m1); |
| VERIFY_IS_APPROX(s1 - m1, (-m1) + s1); |
| VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows, cols, s1)); |
| VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows, cols, s1) - m1); |
| VERIFY_IS_APPROX((m1 * Scalar(2)) - s2, (m1 + m1) - ArrayType::Constant(rows, cols, s2)); |
| m3 = m1; |
| m3 += s2; |
| VERIFY_IS_APPROX(m3, m1 + s2); |
| m3 = m1; |
| m3 -= s1; |
| VERIFY_IS_APPROX(m3, m1 - s1); |
| |
| // scalar operators via Maps |
| m3 = m1; |
| m4 = m1; |
| ArrayType::Map(m4.data(), m4.rows(), m4.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); |
| VERIFY_IS_APPROX(m4, m3 - m2); |
| |
| m3 = m1; |
| m4 = m1; |
| ArrayType::Map(m4.data(), m4.rows(), m4.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols()); |
| VERIFY_IS_APPROX(m4, m3 + m2); |
| |
| m3 = m1; |
| m4 = m1; |
| ArrayType::Map(m4.data(), m4.rows(), m4.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); |
| VERIFY_IS_APPROX(m4, m3 * m2); |
| |
| m3 = m1; |
| m4 = m1; |
| m2 = ArrayType::Random(rows, cols); |
| m2 = (m2 == 0).select(1, m2); |
| ArrayType::Map(m4.data(), m4.rows(), m4.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); |
| VERIFY_IS_APPROX(m4, m3 / m2); |
| |
| // reductions |
| VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum()); |
| VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum()); |
| using numext::abs; |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum()); |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum()); |
| if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1 + m2).sum()), m1.abs().sum(), test_precision<Scalar>())) |
| VERIFY_IS_NOT_APPROX(((m1 + m2).rowwise().sum()).sum(), m1.sum()); |
| VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar, Scalar>())); |
| |
| // vector-wise ops |
| m3 = m1; |
| VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); |
| m3 = m1; |
| VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); |
| m3 = m1; |
| VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); |
| m3 = m1; |
| VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); |
| |
| // Conversion from scalar |
| VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows, cols, s1)); |
| VERIFY_IS_APPROX((m3 = 1), ArrayType::Constant(rows, cols, 1)); |
| VERIFY_IS_APPROX((m3.topLeftCorner(rows, cols) = 1), ArrayType::Constant(rows, cols, 1)); |
| typedef Array<Scalar, ArrayType::RowsAtCompileTime == Dynamic ? 2 : ArrayType::RowsAtCompileTime, |
| ArrayType::ColsAtCompileTime == Dynamic ? 2 : ArrayType::ColsAtCompileTime, ArrayType::Options> |
| FixedArrayType; |
| { |
| FixedArrayType f1(s1); |
| VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); |
| FixedArrayType f2(numext::real(s1)); |
| VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); |
| FixedArrayType f3((int)100 * numext::real(s1)); |
| VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100 * numext::real(s1))); |
| f1.setRandom(); |
| FixedArrayType f4(f1.data()); |
| VERIFY_IS_APPROX(f4, f1); |
| } |
| { |
| FixedArrayType f1{s1}; |
| VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); |
| FixedArrayType f2{numext::real(s1)}; |
| VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); |
| FixedArrayType f3{(int)100 * numext::real(s1)}; |
| VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100 * numext::real(s1))); |
| f1.setRandom(); |
| FixedArrayType f4{f1.data()}; |
| VERIFY_IS_APPROX(f4, f1); |
| } |
| |
| // pow |
| VERIFY_IS_APPROX(m1.pow(2), m1.square()); |
| VERIFY_IS_APPROX(pow(m1, 2), m1.square()); |
| VERIFY_IS_APPROX(m1.pow(3), m1.cube()); |
| VERIFY_IS_APPROX(pow(m1, 3), m1.cube()); |
| VERIFY_IS_APPROX((-m1).pow(3), -m1.cube()); |
| VERIFY_IS_APPROX(pow(2 * m1, 3), 8 * m1.cube()); |
| ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2)); |
| VERIFY_IS_APPROX(Eigen::pow(m1, exponents), m1.square()); |
| VERIFY_IS_APPROX(m1.pow(exponents), m1.square()); |
| VERIFY_IS_APPROX(Eigen::pow(2 * m1, exponents), 4 * m1.square()); |
| VERIFY_IS_APPROX((2 * m1).pow(exponents), 4 * m1.square()); |
| VERIFY_IS_APPROX(Eigen::pow(m1, 2 * exponents), m1.square().square()); |
| VERIFY_IS_APPROX(m1.pow(2 * exponents), m1.square().square()); |
| VERIFY_IS_APPROX(Eigen::pow(m1(0, 0), exponents), ArrayType::Constant(rows, cols, m1(0, 0) * m1(0, 0))); |
| |
| // Check possible conflicts with 1D ctor |
| typedef Array<Scalar, Dynamic, 1> OneDArrayType; |
| { |
| OneDArrayType o1(rows); |
| VERIFY(o1.size() == rows); |
| OneDArrayType o2(static_cast<int>(rows)); |
| VERIFY(o2.size() == rows); |
| } |
| { |
| OneDArrayType o1{rows}; |
| VERIFY(o1.size() == rows); |
| OneDArrayType o4{int(rows)}; |
| VERIFY(o4.size() == rows); |
| } |
| // Check possible conflicts with 2D ctor |
| typedef Array<Scalar, Dynamic, Dynamic> TwoDArrayType; |
| typedef Array<Scalar, 2, 1> ArrayType2; |
| { |
| TwoDArrayType o1(rows, cols); |
| VERIFY(o1.rows() == rows); |
| VERIFY(o1.cols() == cols); |
| TwoDArrayType o2(static_cast<int>(rows), static_cast<int>(cols)); |
| VERIFY(o2.rows() == rows); |
| VERIFY(o2.cols() == cols); |
| |
| ArrayType2 o3(rows, cols); |
| VERIFY(o3(0) == RealScalar(rows) && o3(1) == RealScalar(cols)); |
| ArrayType2 o4(static_cast<int>(rows), static_cast<int>(cols)); |
| VERIFY(o4(0) == RealScalar(rows) && o4(1) == RealScalar(cols)); |
| } |
| { |
| TwoDArrayType o1{rows, cols}; |
| VERIFY(o1.rows() == rows); |
| VERIFY(o1.cols() == cols); |
| TwoDArrayType o2{int(rows), int(cols)}; |
| VERIFY(o2.rows() == rows); |
| VERIFY(o2.cols() == cols); |
| |
| ArrayType2 o3{rows, cols}; |
| VERIFY(o3(0) == RealScalar(rows) && o3(1) == RealScalar(cols)); |
| ArrayType2 o4{int(rows), int(cols)}; |
| VERIFY(o4(0) == RealScalar(rows) && o4(1) == RealScalar(cols)); |
| } |
| } |
| |
| template <typename ArrayType> |
| void comparisons(const ArrayType& m) { |
| using numext::abs; |
| typedef typename ArrayType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; |
| |
| m4 = (m4.abs() == Scalar(0)).select(1, m4); |
| |
| // use operator overloads with default return type |
| |
| VERIFY(((m1 + Scalar(1)) > m1).all()); |
| VERIFY(((m1 - Scalar(1)) < m1).all()); |
| if (rows * cols > 1) { |
| m3 = m1; |
| m3(r, c) += 1; |
| VERIFY(!(m1 < m3).all()); |
| VERIFY(!(m1 > m3).all()); |
| } |
| VERIFY(!(m1 > m2 && m1 < m2).any()); |
| VERIFY((m1 <= m2 || m1 >= m2).all()); |
| |
| // comparisons array to scalar |
| VERIFY((m1 != (m1(r, c) + 1)).any()); |
| VERIFY((m1 > (m1(r, c) - 1)).any()); |
| VERIFY((m1 < (m1(r, c) + 1)).any()); |
| VERIFY((m1 == m1(r, c)).any()); |
| |
| // comparisons scalar to array |
| VERIFY(((m1(r, c) + 1) != m1).any()); |
| VERIFY(((m1(r, c) - 1) < m1).any()); |
| VERIFY(((m1(r, c) + 1) > m1).any()); |
| VERIFY((m1(r, c) == m1).any()); |
| |
| // currently, any() / all() are not vectorized, so use VERIFY_IS_CWISE_EQUAL to test vectorized path |
| |
| // use typed comparisons, regardless of operator overload behavior |
| typename ArrayType::ConstantReturnType typed_true = ArrayType::Constant(rows, cols, Scalar(1)); |
| // (m1 + Scalar(1)) > m1).all() |
| VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseTypedGreater(m1), typed_true); |
| // (m1 - Scalar(1)) < m1).all() |
| VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseTypedLess(m1), typed_true); |
| // (m1 + Scalar(1)) == (m1 + Scalar(1))).all() |
| VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseTypedEqual(m1 + Scalar(1)), typed_true); |
| // (m1 - Scalar(1)) != m1).all() |
| VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseTypedNotEqual(m1), typed_true); |
| // (m1 <= m2 || m1 >= m2).all() |
| VERIFY_IS_CWISE_EQUAL(m1.cwiseTypedGreaterOrEqual(m2) || m1.cwiseTypedLessOrEqual(m2), typed_true); |
| |
| // use boolean comparisons, regardless of operator overload behavior |
| ArrayXX<bool>::ConstantReturnType bool_true = ArrayXX<bool>::Constant(rows, cols, true); |
| // (m1 + Scalar(1)) > m1).all() |
| VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseGreater(m1), bool_true); |
| // (m1 - Scalar(1)) < m1).all() |
| VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseLess(m1), bool_true); |
| // (m1 + Scalar(1)) == (m1 + Scalar(1))).all() |
| VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseEqual(m1 + Scalar(1)), bool_true); |
| // (m1 - Scalar(1)) != m1).all() |
| VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseNotEqual(m1), bool_true); |
| // (m1 <= m2 || m1 >= m2).all() |
| VERIFY_IS_CWISE_EQUAL(m1.cwiseLessOrEqual(m2) || m1.cwiseGreaterOrEqual(m2), bool_true); |
| |
| // test typed comparisons with scalar argument |
| VERIFY_IS_CWISE_EQUAL((m1 - m1).cwiseTypedEqual(Scalar(0)), typed_true); |
| VERIFY_IS_CWISE_EQUAL((m1.abs() + Scalar(1)).cwiseTypedNotEqual(Scalar(0)), typed_true); |
| VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseTypedGreater(m1.minCoeff()), typed_true); |
| VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseTypedLess(m1.maxCoeff()), typed_true); |
| VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseTypedLessOrEqual(NumTraits<Scalar>::highest()), typed_true); |
| VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseTypedGreaterOrEqual(Scalar(0)), typed_true); |
| |
| // test boolean comparisons with scalar argument |
| VERIFY_IS_CWISE_EQUAL((m1 - m1).cwiseEqual(Scalar(0)), bool_true); |
| VERIFY_IS_CWISE_EQUAL((m1.abs() + Scalar(1)).cwiseNotEqual(Scalar(0)), bool_true); |
| VERIFY_IS_CWISE_EQUAL((m1 + Scalar(1)).cwiseGreater(m1.minCoeff()), bool_true); |
| VERIFY_IS_CWISE_EQUAL((m1 - Scalar(1)).cwiseLess(m1.maxCoeff()), bool_true); |
| VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseLessOrEqual(NumTraits<Scalar>::highest()), bool_true); |
| VERIFY_IS_CWISE_EQUAL(m1.abs().cwiseGreaterOrEqual(Scalar(0)), bool_true); |
| |
| // test Select |
| VERIFY_IS_APPROX((m1 < m2).select(m1, m2), m1.cwiseMin(m2)); |
| VERIFY_IS_APPROX((m1 > m2).select(m1, m2), m1.cwiseMax(m2)); |
| Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff()) / Scalar(2); |
| for (int j = 0; j < cols; ++j) |
| for (int i = 0; i < rows; ++i) m3(i, j) = abs(m1(i, j)) < mid ? 0 : m1(i, j); |
| VERIFY_IS_APPROX((m1.abs() < ArrayType::Constant(rows, cols, mid)).select(ArrayType::Zero(rows, cols), m1), m3); |
| // shorter versions: |
| VERIFY_IS_APPROX((m1.abs() < ArrayType::Constant(rows, cols, mid)).select(0, m1), m3); |
| VERIFY_IS_APPROX((m1.abs() >= ArrayType::Constant(rows, cols, mid)).select(m1, 0), m3); |
| // even shorter version: |
| VERIFY_IS_APPROX((m1.abs() < mid).select(0, m1), m3); |
| |
| // count |
| VERIFY(((m1.abs() + 1) > RealScalar(0.1)).count() == rows * cols); |
| |
| // and/or |
| VERIFY((m1 < RealScalar(0) && m1 > RealScalar(0)).count() == 0); |
| VERIFY((m1 < RealScalar(0) || m1 >= RealScalar(0)).count() == rows * cols); |
| RealScalar a = m1.abs().mean(); |
| VERIFY((m1 < -a || m1 > a).count() == (m1.abs() > a).count()); |
| |
| typedef Array<Index, Dynamic, 1> ArrayOfIndices; |
| |
| // TODO allows colwise/rowwise for array |
| VERIFY_IS_APPROX(((m1.abs() + 1) > RealScalar(0.1)).colwise().count(), |
| ArrayOfIndices::Constant(cols, rows).transpose()); |
| VERIFY_IS_APPROX(((m1.abs() + 1) > RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols)); |
| } |
| |
| template <typename ArrayType> |
| void array_real(const ArrayType& m) { |
| using numext::abs; |
| using std::sqrt; |
| typedef typename ArrayType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; |
| |
| // avoid denormalized values so verification doesn't fail on platforms that don't support them |
| // denormalized behavior is tested elsewhere (unary_op_test, binary_ops_test) |
| const Scalar min = (std::numeric_limits<Scalar>::min)(); |
| m1 = (m1.abs() < min).select(Scalar(0), m1); |
| m2 = (m2.abs() < min).select(Scalar(0), m2); |
| m4 = (m4.abs() < min).select(Scalar(1), m4); |
| |
| Scalar s1 = internal::random<Scalar>(); |
| |
| // these tests are mostly to check possible compilation issues with free-functions. |
| VERIFY_IS_APPROX(m1.sin(), sin(m1)); |
| VERIFY_IS_APPROX(m1.cos(), cos(m1)); |
| VERIFY_IS_APPROX(m1.tan(), tan(m1)); |
| VERIFY_IS_APPROX(m1.asin(), asin(m1)); |
| VERIFY_IS_APPROX(m1.acos(), acos(m1)); |
| VERIFY_IS_APPROX(m1.atan(), atan(m1)); |
| VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); |
| VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); |
| VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); |
| VERIFY_IS_APPROX(m1.atan2(m2), atan2(m1, m2)); |
| |
| VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1))); |
| VERIFY_IS_APPROX(m1.sinh().asinh(), asinh(sinh(m1))); |
| VERIFY_IS_APPROX(m1.cosh().acosh(), acosh(cosh(m1))); |
| VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1))); |
| VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); |
| |
| VERIFY_IS_APPROX(m1.arg(), arg(m1)); |
| VERIFY_IS_APPROX(m1.round(), round(m1)); |
| VERIFY_IS_APPROX(m1.rint(), rint(m1)); |
| VERIFY_IS_APPROX(m1.floor(), floor(m1)); |
| VERIFY_IS_APPROX(m1.ceil(), ceil(m1)); |
| VERIFY_IS_APPROX(m1.trunc(), trunc(m1)); |
| VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); |
| VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); |
| VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); |
| VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); |
| VERIFY_IS_APPROX(m1.abs(), abs(m1)); |
| VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); |
| VERIFY_IS_APPROX(m1.square(), square(m1)); |
| VERIFY_IS_APPROX(m1.cube(), cube(m1)); |
| VERIFY_IS_APPROX(cos(m1 + RealScalar(3) * m2), cos((m1 + RealScalar(3) * m2).eval())); |
| VERIFY_IS_APPROX(m1.sign(), sign(m1)); |
| VERIFY((m1.sqrt().sign().isNaN() == (Eigen::isnan)(sign(sqrt(m1)))).all()); |
| |
| // avoid inf and NaNs so verification doesn't fail |
| m3 = m4.abs(); |
| |
| VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m3))); |
| VERIFY_IS_APPROX(m3.cbrt(), cbrt(m3)); |
| VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1) / sqrt(abs(m3))); |
| VERIFY_IS_APPROX(rsqrt(m3), Scalar(1) / sqrt(abs(m3))); |
| VERIFY_IS_APPROX(m3.log(), log(m3)); |
| VERIFY_IS_APPROX(m3.log1p(), log1p(m3)); |
| VERIFY_IS_APPROX(m3.log10(), log10(m3)); |
| VERIFY_IS_APPROX(m3.log2(), log2(m3)); |
| |
| VERIFY((!(m1 > m2) == (m1 <= m2)).all()); |
| |
| VERIFY_IS_APPROX(sin(m1.asin()), m1); |
| VERIFY_IS_APPROX(cos(m1.acos()), m1); |
| VERIFY_IS_APPROX(tan(m1.atan()), m1); |
| VERIFY_IS_APPROX(sinh(m1), Scalar(0.5) * (exp(m1) - exp(-m1))); |
| VERIFY_IS_APPROX(cosh(m1), Scalar(0.5) * (exp(m1) + exp(-m1))); |
| VERIFY_IS_APPROX(tanh(m1), (Scalar(0.5) * (exp(m1) - exp(-m1))) / (Scalar(0.5) * (exp(m1) + exp(-m1)))); |
| VERIFY_IS_APPROX(logistic(m1), (Scalar(1) / (Scalar(1) + exp(-m1)))); |
| VERIFY_IS_APPROX(arg(m1), ((m1 < Scalar(0)).template cast<Scalar>()) * Scalar(std::acos(Scalar(-1)))); |
| VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all()); |
| VERIFY((rint(m1) <= ceil(m1) && rint(m1) >= floor(m1)).all()); |
| VERIFY(((ceil(m1) - round(m1)) <= Scalar(0.5) || (round(m1) - floor(m1)) <= Scalar(0.5)).all()); |
| VERIFY(((ceil(m1) - round(m1)) <= Scalar(1.0) && (round(m1) - floor(m1)) <= Scalar(1.0)).all()); |
| VERIFY(((ceil(m1) - rint(m1)) <= Scalar(0.5) || (rint(m1) - floor(m1)) <= Scalar(0.5)).all()); |
| VERIFY(((ceil(m1) - rint(m1)) <= Scalar(1.0) && (rint(m1) - floor(m1)) <= Scalar(1.0)).all()); |
| VERIFY((Eigen::isnan)((m1 * Scalar(0)) / Scalar(0)).all()); |
| VERIFY((Eigen::isinf)(m4 / Scalar(0)).all()); |
| VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1 * Scalar(0) / Scalar(0))) && |
| (!(Eigen::isfinite)(m4 / Scalar(0)))) |
| .all()); |
| VERIFY_IS_APPROX(inverse(inverse(m4)), m4); |
| VERIFY((abs(m1) == m1 || abs(m1) == -m1).all()); |
| VERIFY_IS_APPROX(m3, sqrt(abs2(m3))); |
| VERIFY_IS_APPROX(m1.absolute_difference(m2), (m1 > m2).select(m1 - m2, m2 - m1)); |
| VERIFY_IS_APPROX(m1.sign(), -(-m1).sign()); |
| VERIFY_IS_APPROX(m1 * m1.sign(), m1.abs()); |
| VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); |
| |
| ArrayType tmp = m1.atan2(m2); |
| for (Index i = 0; i < tmp.size(); ++i) { |
| Scalar actual = tmp.array()(i); |
| Scalar expected = Scalar(std::atan2(m1.array()(i), m2.array()(i))); |
| VERIFY_IS_APPROX(actual, expected); |
| } |
| |
| VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)); |
| VERIFY_IS_APPROX(numext::abs2(Eigen::real(m1)) + numext::abs2(Eigen::imag(m1)), numext::abs2(m1)); |
| if (!NumTraits<Scalar>::IsComplex) VERIFY_IS_APPROX(numext::real(m1), m1); |
| |
| // shift argument of logarithm so that it is not zero |
| Scalar smallNumber = NumTraits<Scalar>::dummy_precision(); |
| VERIFY_IS_APPROX((m3 + smallNumber).log(), log(abs(m3) + smallNumber)); |
| VERIFY_IS_APPROX((m3 + smallNumber + Scalar(1)).log(), log1p(abs(m3) + smallNumber)); |
| |
| VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1 + m2)); |
| VERIFY_IS_APPROX(m1.exp(), exp(m1)); |
| VERIFY_IS_APPROX(m1.exp() / m2.exp(), (m1 - m2).exp()); |
| |
| VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); |
| VERIFY_IS_APPROX((m3 + smallNumber).exp() - Scalar(1), expm1(abs(m3) + smallNumber)); |
| |
| VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); |
| VERIFY_IS_APPROX(pow(m3, RealScalar(0.5)), m3.sqrt()); |
| VERIFY_IS_APPROX(m3.pow(RealScalar(1.0 / 3.0)), m3.cbrt()); |
| VERIFY_IS_APPROX(pow(m3, RealScalar(1.0 / 3.0)), m3.cbrt()); |
| |
| VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt()); |
| VERIFY_IS_APPROX(pow(m3, RealScalar(-0.5)), m3.rsqrt()); |
| |
| // Avoid inf and NaN. |
| m3 = (m1.square() < NumTraits<Scalar>::epsilon()).select(Scalar(1), m3); |
| VERIFY_IS_APPROX(m3.pow(RealScalar(-2)), m3.square().inverse()); |
| |
| // Test pow and atan2 on special IEEE values. |
| unary_ops_test<Scalar>(); |
| binary_ops_test<Scalar>(); |
| |
| VERIFY_IS_APPROX(log10(m3), log(m3) / numext::log(Scalar(10))); |
| VERIFY_IS_APPROX(log2(m3), log(m3) / numext::log(Scalar(2))); |
| |
| // scalar by array division |
| const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon()); |
| s1 += Scalar(tiny); |
| m1 += ArrayType::Constant(rows, cols, Scalar(tiny)); |
| VERIFY_IS_CWISE_APPROX(s1 / m1, s1 * m1.inverse()); |
| |
| // check inplace transpose |
| m3 = m1; |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3, m1.transpose()); |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3, m1); |
| } |
| |
| template <typename ArrayType> |
| void array_complex(const ArrayType& m) { |
| typedef typename ArrayType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m4 = m1; |
| |
| m4.real() = (m4.real().abs() == RealScalar(0)).select(RealScalar(1), m4.real()); |
| m4.imag() = (m4.imag().abs() == RealScalar(0)).select(RealScalar(1), m4.imag()); |
| |
| Array<RealScalar, -1, -1> m3(rows, cols); |
| |
| for (Index i = 0; i < m.rows(); ++i) |
| for (Index j = 0; j < m.cols(); ++j) m2(i, j) = sqrt(m1(i, j)); |
| |
| // these tests are mostly to check possible compilation issues with free-functions. |
| VERIFY_IS_APPROX(m1.sin(), sin(m1)); |
| VERIFY_IS_APPROX(m1.cos(), cos(m1)); |
| VERIFY_IS_APPROX(m1.tan(), tan(m1)); |
| VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); |
| VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); |
| VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); |
| VERIFY_IS_APPROX(m1.logistic(), logistic(m1)); |
| VERIFY_IS_APPROX(m1.arg(), arg(m1)); |
| VERIFY_IS_APPROX(m1.carg(), carg(m1)); |
| VERIFY_IS_APPROX(arg(m1), carg(m1)); |
| VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); |
| VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); |
| VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); |
| VERIFY_IS_APPROX(m4.inverse(), inverse(m4)); |
| VERIFY_IS_APPROX(m1.log(), log(m1)); |
| VERIFY_IS_APPROX(m1.log10(), log10(m1)); |
| VERIFY_IS_APPROX(m1.log2(), log2(m1)); |
| VERIFY_IS_APPROX(m1.abs(), abs(m1)); |
| VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); |
| VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1)); |
| VERIFY_IS_APPROX(m1.square(), square(m1)); |
| VERIFY_IS_APPROX(m1.cube(), cube(m1)); |
| VERIFY_IS_APPROX(cos(m1 + RealScalar(3) * m2), cos((m1 + RealScalar(3) * m2).eval())); |
| VERIFY_IS_APPROX(m1.sign(), sign(m1)); |
| |
| VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1 + m2)); |
| VERIFY_IS_APPROX(m1.exp(), exp(m1)); |
| VERIFY_IS_APPROX(m1.exp() / m2.exp(), (m1 - m2).exp()); |
| |
| VERIFY_IS_APPROX(m1.expm1(), expm1(m1)); |
| VERIFY_IS_APPROX(expm1(m1), exp(m1) - 1.); |
| // Check for larger magnitude complex numbers that expm1 matches exp - 1. |
| VERIFY_IS_APPROX(expm1(10. * m1), exp(10. * m1) - 1.); |
| |
| VERIFY_IS_APPROX(sinh(m1), 0.5 * (exp(m1) - exp(-m1))); |
| VERIFY_IS_APPROX(cosh(m1), 0.5 * (exp(m1) + exp(-m1))); |
| VERIFY_IS_APPROX(tanh(m1), (0.5 * (exp(m1) - exp(-m1))) / (0.5 * (exp(m1) + exp(-m1)))); |
| VERIFY_IS_APPROX(logistic(m1), (1.0 / (1.0 + exp(-m1)))); |
| if (m1.size() > 0) { |
| // Complex exponential overflow edge-case. |
| Scalar old_m1_val = m1(0, 0); |
| m1(0, 0) = std::complex<RealScalar>(1000.0, 1000.0); |
| VERIFY_IS_APPROX(logistic(m1), (1.0 / (1.0 + exp(-m1)))); |
| m1(0, 0) = old_m1_val; // Restore value for future tests. |
| } |
| |
| for (Index i = 0; i < m.rows(); ++i) |
| for (Index j = 0; j < m.cols(); ++j) m3(i, j) = std::atan2(m1(i, j).imag(), m1(i, j).real()); |
| VERIFY_IS_APPROX(arg(m1), m3); |
| VERIFY_IS_APPROX(carg(m1), m3); |
| |
| std::complex<RealScalar> zero(0.0, 0.0); |
| VERIFY((Eigen::isnan)(m1 * zero / zero).all()); |
| #if EIGEN_COMP_MSVC |
| // msvc complex division is not robust |
| VERIFY((Eigen::isinf)(m4 / RealScalar(0)).all()); |
| #else |
| #if EIGEN_COMP_CLANG |
| // clang's complex division is notoriously broken too |
| if ((numext::isinf)(m4(0, 0) / RealScalar(0))) { |
| #endif |
| VERIFY((Eigen::isinf)(m4 / zero).all()); |
| #if EIGEN_COMP_CLANG |
| } else { |
| VERIFY((Eigen::isinf)(m4.real() / zero.real()).all()); |
| } |
| #endif |
| #endif // MSVC |
| |
| VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1 * zero / zero)) && (!(Eigen::isfinite)(m1 / zero))).all()); |
| |
| VERIFY_IS_APPROX(inverse(inverse(m4)), m4); |
| VERIFY_IS_APPROX(conj(m1.conjugate()), m1); |
| VERIFY_IS_APPROX(abs(m1), sqrt(square(m1.real()) + square(m1.imag()))); |
| VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1))); |
| VERIFY_IS_APPROX(log10(m1), log(m1) / log(10)); |
| VERIFY_IS_APPROX(log2(m1), log(m1) / log(2)); |
| |
| VERIFY_IS_APPROX(m1.sign(), -(-m1).sign()); |
| VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); |
| |
| // scalar by array division |
| Scalar s1 = internal::random<Scalar>(); |
| const RealScalar tiny = std::sqrt(std::numeric_limits<RealScalar>::epsilon()); |
| s1 += Scalar(tiny); |
| m1 += ArrayType::Constant(rows, cols, Scalar(tiny)); |
| VERIFY_IS_APPROX(s1 / m1, s1 * m1.inverse()); |
| |
| // check inplace transpose |
| m2 = m1; |
| m2.transposeInPlace(); |
| VERIFY_IS_APPROX(m2, m1.transpose()); |
| m2.transposeInPlace(); |
| VERIFY_IS_APPROX(m2, m1); |
| // Check vectorized inplace transpose. |
| ArrayType m5 = ArrayType::Random(131, 131); |
| ArrayType m6 = m5; |
| m6.transposeInPlace(); |
| VERIFY_IS_APPROX(m6, m5.transpose()); |
| } |
| |
| template <typename ArrayType> |
| void min_max(const ArrayType& m) { |
| typedef typename ArrayType::Scalar Scalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols); |
| |
| // min/max with array |
| Scalar maxM1 = m1.maxCoeff(); |
| Scalar minM1 = m1.minCoeff(); |
| |
| VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, minM1), (m1.min)(ArrayType::Constant(rows, cols, minM1))); |
| VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows, cols, maxM1))); |
| |
| VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, maxM1), (m1.max)(ArrayType::Constant(rows, cols, maxM1))); |
| VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows, cols, minM1))); |
| |
| // min/max with scalar input |
| VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, minM1), (m1.min)(minM1)); |
| VERIFY_IS_APPROX(m1, (m1.min)(maxM1)); |
| |
| VERIFY_IS_APPROX(ArrayType::Constant(rows, cols, maxM1), (m1.max)(maxM1)); |
| VERIFY_IS_APPROX(m1, (m1.max)(minM1)); |
| |
| // min/max with various NaN propagation options. |
| if (m1.size() > 1 && !NumTraits<Scalar>::IsInteger) { |
| m1(0, 0) = NumTraits<Scalar>::quiet_NaN(); |
| maxM1 = m1.template maxCoeff<PropagateNaN>(); |
| minM1 = m1.template minCoeff<PropagateNaN>(); |
| VERIFY((numext::isnan)(maxM1)); |
| VERIFY((numext::isnan)(minM1)); |
| |
| maxM1 = m1.template maxCoeff<PropagateNumbers>(); |
| minM1 = m1.template minCoeff<PropagateNumbers>(); |
| VERIFY(!(numext::isnan)(maxM1)); |
| VERIFY(!(numext::isnan)(minM1)); |
| } |
| } |
| |
| template <typename Scalar> |
| struct shift_imm_traits { |
| enum { Cost = 1, PacketAccess = internal::packet_traits<Scalar>::HasShift }; |
| }; |
| |
| template <int N, typename Scalar> |
| struct logical_left_shift_op { |
| Scalar operator()(const Scalar& v) const { return numext::logical_shift_left(v, N); } |
| template <typename Packet> |
| Packet packetOp(const Packet& v) const { |
| return internal::plogical_shift_left<N>(v); |
| } |
| }; |
| template <int N, typename Scalar> |
| struct logical_right_shift_op { |
| Scalar operator()(const Scalar& v) const { return numext::logical_shift_right(v, N); } |
| template <typename Packet> |
| Packet packetOp(const Packet& v) const { |
| return internal::plogical_shift_right<N>(v); |
| } |
| }; |
| template <int N, typename Scalar> |
| struct arithmetic_right_shift_op { |
| Scalar operator()(const Scalar& v) const { return numext::arithmetic_shift_right(v, N); } |
| template <typename Packet> |
| Packet packetOp(const Packet& v) const { |
| return internal::parithmetic_shift_right<N>(v); |
| } |
| }; |
| |
| namespace Eigen { |
| namespace internal { |
| template <int N, typename Scalar> |
| struct functor_traits<logical_left_shift_op<N, Scalar>> : shift_imm_traits<Scalar> {}; |
| template <int N, typename Scalar> |
| struct functor_traits<logical_right_shift_op<N, Scalar>> : shift_imm_traits<Scalar> {}; |
| template <int N, typename Scalar> |
| struct functor_traits<arithmetic_right_shift_op<N, Scalar>> : shift_imm_traits<Scalar> {}; |
| } // namespace internal |
| } // namespace Eigen |
| |
| template <typename ArrayType> |
| struct shift_test_impl { |
| typedef typename ArrayType::Scalar Scalar; |
| static constexpr size_t Size = sizeof(Scalar); |
| static constexpr size_t MaxShift = (CHAR_BIT * Size) - 1; |
| |
| template <size_t N = 1> |
| static inline std::enable_if_t<(N > MaxShift), void> run(const ArrayType&) {} |
| template <size_t N = 1> |
| static inline std::enable_if_t<(N <= MaxShift), void> run(const ArrayType& m) { |
| const Index rows = m.rows(); |
| const Index cols = m.cols(); |
| |
| ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols); |
| |
| m2 = m1.unaryExpr([](const Scalar& v) { return numext::logical_shift_left(v, N); }); |
| m3 = m1.unaryExpr(logical_left_shift_op<N, Scalar>()); |
| VERIFY_IS_CWISE_EQUAL(m2, m3); |
| |
| m2 = m1.unaryExpr([](const Scalar& v) { return numext::logical_shift_right(v, N); }); |
| m3 = m1.unaryExpr(logical_right_shift_op<N, Scalar>()); |
| VERIFY_IS_CWISE_EQUAL(m2, m3); |
| |
| m2 = m1.unaryExpr([](const Scalar& v) { return numext::arithmetic_shift_right(v, N); }); |
| m3 = m1.unaryExpr(arithmetic_right_shift_op<N, Scalar>()); |
| VERIFY_IS_CWISE_EQUAL(m2, m3); |
| |
| run<N + 1>(m); |
| } |
| }; |
| template <typename ArrayType> |
| void shift_test(const ArrayType& m) { |
| shift_test_impl<ArrayType>::run(m); |
| } |
| |
| template <typename ArrayType> |
| struct typed_logicals_test_impl { |
| using Scalar = typename ArrayType::Scalar; |
| |
| static bool scalar_to_bool(const Scalar& x) { return x != Scalar(0); } |
| static Scalar bool_to_scalar(bool x) { return x ? Scalar(1) : Scalar(0); } |
| |
| static Scalar eval_bool_and(const Scalar& x, const Scalar& y) { |
| return bool_to_scalar(scalar_to_bool(x) && scalar_to_bool(y)); |
| } |
| static Scalar eval_bool_or(const Scalar& x, const Scalar& y) { |
| return bool_to_scalar(scalar_to_bool(x) || scalar_to_bool(y)); |
| } |
| static Scalar eval_bool_xor(const Scalar& x, const Scalar& y) { |
| return bool_to_scalar(scalar_to_bool(x) != scalar_to_bool(y)); |
| } |
| static Scalar eval_bool_not(const Scalar& x) { return bool_to_scalar(!scalar_to_bool(x)); } |
| |
| static void run(const ArrayType& m) { |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| ArrayType m1(rows, cols), m2(rows, cols), m3(rows, cols), m4(rows, cols); |
| |
| m1.setRandom(); |
| m2.setRandom(); |
| m1 *= ArrayX<bool>::Random(rows, cols).cast<Scalar>(); |
| m2 *= ArrayX<bool>::Random(rows, cols).cast<Scalar>(); |
| |
| // test boolean and |
| m3 = m1 && m2; |
| m4 = m1.binaryExpr(m2, [](const Scalar& x, const Scalar& y) { return eval_bool_and(x, y); }); |
| VERIFY_IS_CWISE_EQUAL(m3, m4); |
| for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); |
| |
| // test boolean or |
| m3 = m1 || m2; |
| m4 = m1.binaryExpr(m2, [](const Scalar& x, const Scalar& y) { return eval_bool_or(x, y); }); |
| VERIFY_IS_CWISE_EQUAL(m3, m4); |
| for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); |
| |
| // test boolean xor |
| m3 = m1.binaryExpr(m2, internal::scalar_boolean_xor_op<Scalar>()); |
| m4 = m1.binaryExpr(m2, [](const Scalar& x, const Scalar& y) { return eval_bool_xor(x, y); }); |
| VERIFY_IS_CWISE_EQUAL(m3, m4); |
| for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); |
| |
| // test boolean not |
| m3 = !m1; |
| m4 = m1.unaryExpr([](const Scalar& x) { return eval_bool_not(x); }); |
| VERIFY_IS_CWISE_EQUAL(m3, m4); |
| for (const Scalar& val : m3) VERIFY(val == Scalar(0) || val == Scalar(1)); |
| |
| // test something more complicated |
| m3 = m1 && m2; |
| m4 = !(!m1 || !m2); |
| VERIFY_IS_CWISE_EQUAL(m3, m4); |
| |
| m3 = m1.binaryExpr(m2, internal::scalar_boolean_xor_op<Scalar>()); |
| m4 = (!m1).binaryExpr((!m2), internal::scalar_boolean_xor_op<Scalar>()); |
| VERIFY_IS_CWISE_EQUAL(m3, m4); |
| |
| const size_t bytes = size_t(rows) * size_t(cols) * sizeof(Scalar); |
| |
| std::vector<uint8_t> m1_buffer(bytes), m2_buffer(bytes), m3_buffer(bytes), m4_buffer(bytes); |
| |
| std::memcpy(m1_buffer.data(), m1.data(), bytes); |
| std::memcpy(m2_buffer.data(), m2.data(), bytes); |
| |
| // test bitwise and |
| m3 = m1 & m2; |
| std::memcpy(m3_buffer.data(), m3.data(), bytes); |
| for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(m1_buffer[i] & m2_buffer[i])); |
| |
| // test bitwise or |
| m3 = m1 | m2; |
| std::memcpy(m3_buffer.data(), m3.data(), bytes); |
| for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(m1_buffer[i] | m2_buffer[i])); |
| |
| // test bitwise xor |
| m3 = m1 ^ m2; |
| std::memcpy(m3_buffer.data(), m3.data(), bytes); |
| for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(m1_buffer[i] ^ m2_buffer[i])); |
| |
| // test bitwise not |
| m3 = ~m1; |
| std::memcpy(m3_buffer.data(), m3.data(), bytes); |
| for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], uint8_t(~m1_buffer[i])); |
| |
| // test something more complicated |
| m3 = m1 & m2; |
| m4 = ~(~m1 | ~m2); |
| std::memcpy(m3_buffer.data(), m3.data(), bytes); |
| std::memcpy(m4_buffer.data(), m4.data(), bytes); |
| for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], m4_buffer[i]); |
| |
| m3 = m1 ^ m2; |
| m4 = (~m1) ^ (~m2); |
| std::memcpy(m3_buffer.data(), m3.data(), bytes); |
| std::memcpy(m4_buffer.data(), m4.data(), bytes); |
| for (size_t i = 0; i < bytes; i++) VERIFY_IS_EQUAL(m3_buffer[i], m4_buffer[i]); |
| } |
| }; |
| template <typename ArrayType> |
| void typed_logicals_test(const ArrayType& m) { |
| typed_logicals_test_impl<ArrayType>::run(m); |
| } |
| |
| // print non-mangled typenames |
| template <typename T> |
| std::string printTypeInfo(const T&) { |
| return typeid(T).name(); |
| } |
| template <> |
| std::string printTypeInfo(const int8_t&) { |
| return "int8_t"; |
| } |
| template <> |
| std::string printTypeInfo(const int16_t&) { |
| return "int16_t"; |
| } |
| template <> |
| std::string printTypeInfo(const int32_t&) { |
| return "int32_t"; |
| } |
| template <> |
| std::string printTypeInfo(const int64_t&) { |
| return "int64_t"; |
| } |
| template <> |
| std::string printTypeInfo(const uint8_t&) { |
| return "uint8_t"; |
| } |
| template <> |
| std::string printTypeInfo(const uint16_t&) { |
| return "uint16_t"; |
| } |
| template <> |
| std::string printTypeInfo(const uint32_t&) { |
| return "uint32_t"; |
| } |
| template <> |
| std::string printTypeInfo(const uint64_t&) { |
| return "uint64_t"; |
| } |
| template <> |
| std::string printTypeInfo(const float&) { |
| return "float"; |
| } |
| template <> |
| std::string printTypeInfo(const double&) { |
| return "double"; |
| } |
| // template<> std::string printTypeInfo(const long double&) { return "long double"; } |
| template <> |
| std::string printTypeInfo(const half&) { |
| return "half"; |
| } |
| template <> |
| std::string printTypeInfo(const bfloat16&) { |
| return "bfloat16"; |
| } |
| |
| template <typename SrcType, typename DstType, int RowsAtCompileTime, int ColsAtCompileTime> |
| struct cast_test_impl { |
| using SrcArray = Array<SrcType, RowsAtCompileTime, ColsAtCompileTime>; |
| using DstArray = Array<DstType, RowsAtCompileTime, ColsAtCompileTime>; |
| struct RandomOp { |
| inline SrcType operator()(const SrcType&) const { |
| return internal::random_without_cast_overflow<SrcType, DstType>::value(); |
| } |
| }; |
| |
| static constexpr int SrcPacketSize = internal::packet_traits<SrcType>::size; |
| static constexpr int DstPacketSize = internal::packet_traits<DstType>::size; |
| static constexpr int MaxPacketSize = internal::plain_enum_max(SrcPacketSize, DstPacketSize); |
| |
| static void run() { |
| const Index testRows = RowsAtCompileTime == Dynamic ? ((10 * MaxPacketSize) + 1) : RowsAtCompileTime; |
| const Index testCols = ColsAtCompileTime == Dynamic ? ((10 * MaxPacketSize) + 1) : ColsAtCompileTime; |
| const Index testSize = testRows * testCols; |
| const Index minTestSize = 100; |
| const Index repeats = numext::div_ceil(minTestSize, testSize); |
| |
| SrcArray src(testRows, testCols); |
| DstArray dst(testRows, testCols); |
| |
| for (Index repeat = 0; repeat < repeats; repeat++) { |
| src = src.unaryExpr(RandomOp()); |
| dst = src.template cast<DstType>(); |
| |
| for (Index j = 0; j < testCols; j++) |
| for (Index i = 0; i < testRows; i++) { |
| SrcType srcVal = src(i, j); |
| DstType refVal = internal::cast_impl<SrcType, DstType>::run(srcVal); |
| DstType dstVal = dst(i, j); |
| bool isApprox = verifyIsApprox(dstVal, refVal); |
| if (!isApprox) |
| std::cout << printTypeInfo(srcVal) << ": [" << +srcVal << "] to " << printTypeInfo(dstVal) << ": [" |
| << +dstVal << "] != [" << +refVal << "]\n"; |
| VERIFY(isApprox); |
| } |
| } |
| } |
| }; |
| |
| template <int RowsAtCompileTime, int ColsAtCompileTime, typename... ScalarTypes> |
| struct cast_tests_impl { |
| using ScalarTuple = std::tuple<ScalarTypes...>; |
| static constexpr size_t ScalarTupleSize = std::tuple_size<ScalarTuple>::value; |
| |
| template <size_t i = 0, size_t j = i + 1, bool Done = (i >= ScalarTupleSize - 1) || (j >= ScalarTupleSize)> |
| static std::enable_if_t<Done> run() {} |
| |
| template <size_t i = 0, size_t j = i + 1, bool Done = (i >= ScalarTupleSize - 1) || (j >= ScalarTupleSize)> |
| static std::enable_if_t<!Done> run() { |
| using Type1 = typename std::tuple_element<i, ScalarTuple>::type; |
| using Type2 = typename std::tuple_element<j, ScalarTuple>::type; |
| cast_test_impl<Type1, Type2, RowsAtCompileTime, ColsAtCompileTime>::run(); |
| cast_test_impl<Type2, Type1, RowsAtCompileTime, ColsAtCompileTime>::run(); |
| static constexpr size_t next_i = (j == ScalarTupleSize - 1) ? (i + 1) : (i + 0); |
| static constexpr size_t next_j = (j == ScalarTupleSize - 1) ? (i + 2) : (j + 1); |
| run<next_i, next_j>(); |
| } |
| }; |
| |
| // for now, remove all references to 'long double' until test passes on all platforms |
| template <int RowsAtCompileTime, int ColsAtCompileTime> |
| void cast_test() { |
| cast_tests_impl<RowsAtCompileTime, ColsAtCompileTime, bool, int8_t, int16_t, int32_t, int64_t, uint8_t, uint16_t, |
| uint32_t, uint64_t, float, double, /*long double, */ half, bfloat16>::run(); |
| } |
| |
| EIGEN_DECLARE_TEST(array_cwise) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(array_generic(Array<float, 1, 1>())); |
| CALL_SUBTEST_2(array_generic(Array22f())); |
| CALL_SUBTEST_3(array_generic(Array44d())); |
| CALL_SUBTEST_4(array_generic( |
| ArrayXXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_7(array_generic( |
| ArrayXXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_8(array_generic( |
| ArrayXXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_7(array_generic(Array<Index, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_8(shift_test( |
| ArrayXXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_9(shift_test(Array<Index, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_10(array_generic(Array<uint32_t, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_11(array_generic(Array<uint64_t, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| } |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(comparisons(Array<float, 1, 1>())); |
| CALL_SUBTEST_2(comparisons(Array22f())); |
| CALL_SUBTEST_3(comparisons(Array44d())); |
| CALL_SUBTEST_7(comparisons( |
| ArrayXXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_8(comparisons( |
| ArrayXXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| } |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_6(min_max(Array<float, 1, 1>())); |
| CALL_SUBTEST_7(min_max(Array22f())); |
| CALL_SUBTEST_8(min_max(Array44d())); |
| CALL_SUBTEST_9(min_max( |
| ArrayXXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_10(min_max( |
| ArrayXXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| } |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_11(array_real(Array<float, 1, 1>())); |
| CALL_SUBTEST_12(array_real(Array22f())); |
| CALL_SUBTEST_13(array_real(Array44d())); |
| CALL_SUBTEST_14(array_real( |
| ArrayXXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_15(array_real(Array<Eigen::half, 32, 32>())); |
| CALL_SUBTEST_16(array_real(Array<Eigen::bfloat16, 32, 32>())); |
| } |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_17(array_complex( |
| ArrayXXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_18(array_complex( |
| ArrayXXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| } |
| |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_19(float_pow_test()); |
| CALL_SUBTEST_20(int_pow_test()); |
| CALL_SUBTEST_21(mixed_pow_test()); |
| CALL_SUBTEST_22(signbit_tests()); |
| } |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_23(typed_logicals_test(ArrayX<int>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_24(typed_logicals_test(ArrayX<float>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_25(typed_logicals_test(ArrayX<double>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_26(typed_logicals_test(ArrayX<std::complex<float>>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_27(typed_logicals_test(ArrayX<std::complex<double>>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| } |
| |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_28((cast_test<1, 1>())); |
| CALL_SUBTEST_29((cast_test<3, 1>())); |
| CALL_SUBTEST_30((cast_test<5, 1>())); |
| CALL_SUBTEST_31((cast_test<9, 1>())); |
| CALL_SUBTEST_32((cast_test<17, 1>())); |
| CALL_SUBTEST_33((cast_test<Dynamic, 1>())); |
| } |
| |
| VERIFY((internal::is_same<internal::global_math_functions_filtering_base<int>::type, int>::value)); |
| VERIFY((internal::is_same<internal::global_math_functions_filtering_base<float>::type, float>::value)); |
| VERIFY((internal::is_same<internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i>>::value)); |
| typedef CwiseUnaryOp<internal::scalar_abs_op<double>, ArrayXd> Xpr; |
| VERIFY((internal::is_same<internal::global_math_functions_filtering_base<Xpr>::type, ArrayBase<Xpr>>::value)); |
| } |