blob: 35839e4666d68c59b7aad366f4ff83f9e8234f07 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// workaround issue between gcc >= 4.7 and cuda 5.5
#if (defined __GNUC__) && (__GNUC__ > 4 || __GNUC_MINOR__ >= 7)
#undef _GLIBCXX_ATOMIC_BUILTINS
#undef _GLIBCXX_USE_INT128
#endif
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#include "main.h"
#include "gpu_common.h"
// Check that dense modules can be properly parsed by nvcc
#include <Eigen/Dense>
// struct Foo{
// EIGEN_DEVICE_FUNC
// void operator()(int i, const float* mats, float* vecs) const {
// using namespace Eigen;
// // Matrix3f M(data);
// // Vector3f x(data+9);
// // Map<Vector3f>(data+9) = M.inverse() * x;
// Matrix3f M(mats+i/16);
// Vector3f x(vecs+i*3);
// // using std::min;
// // using std::sqrt;
// Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x();
// //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum();
// }
// };
template <typename T>
struct coeff_wise {
EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
using namespace Eigen;
T x1(in + i);
T x2(in + i + 1);
T x3(in + i + 2);
Map<T> res(out + i * T::MaxSizeAtCompileTime);
res.array() += (in[0] * x1 + x2).array() * x3.array();
}
};
template <typename T>
struct complex_sqrt {
EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
using namespace Eigen;
typedef typename T::Scalar ComplexType;
typedef typename T::Scalar::value_type ValueType;
const int num_special_inputs = 18;
if (i == 0) {
const ValueType nan = std::numeric_limits<ValueType>::quiet_NaN();
typedef Eigen::Vector<ComplexType, num_special_inputs> SpecialInputs;
SpecialInputs special_in;
special_in.setZero();
int idx = 0;
special_in[idx++] = ComplexType(0, 0);
special_in[idx++] = ComplexType(-0, 0);
special_in[idx++] = ComplexType(0, -0);
special_in[idx++] = ComplexType(-0, -0);
// GCC's fallback sqrt implementation fails for inf inputs.
// It is called when _GLIBCXX_USE_C99_COMPLEX is false or if
// clang includes the GCC header (which temporarily disables
// _GLIBCXX_USE_C99_COMPLEX)
#if !defined(_GLIBCXX_COMPLEX) || (_GLIBCXX_USE_C99_COMPLEX && !defined(__CLANG_CUDA_WRAPPERS_COMPLEX))
const ValueType inf = std::numeric_limits<ValueType>::infinity();
special_in[idx++] = ComplexType(1.0, inf);
special_in[idx++] = ComplexType(nan, inf);
special_in[idx++] = ComplexType(1.0, -inf);
special_in[idx++] = ComplexType(nan, -inf);
special_in[idx++] = ComplexType(-inf, 1.0);
special_in[idx++] = ComplexType(inf, 1.0);
special_in[idx++] = ComplexType(-inf, -1.0);
special_in[idx++] = ComplexType(inf, -1.0);
special_in[idx++] = ComplexType(-inf, nan);
special_in[idx++] = ComplexType(inf, nan);
#endif
special_in[idx++] = ComplexType(1.0, nan);
special_in[idx++] = ComplexType(nan, 1.0);
special_in[idx++] = ComplexType(nan, -1.0);
special_in[idx++] = ComplexType(nan, nan);
Map<SpecialInputs> special_out(out);
special_out = special_in.cwiseSqrt();
}
T x1(in + i);
Map<T> res(out + num_special_inputs + i * T::MaxSizeAtCompileTime);
res = x1.cwiseSqrt();
}
};
template <typename T>
struct complex_operators {
EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
using namespace Eigen;
typedef typename T::Scalar ComplexType;
typedef typename T::Scalar::value_type ValueType;
const int num_scalar_operators = 24;
const int num_vector_operators = 23; // no unary + operator.
int out_idx = i * (num_scalar_operators + num_vector_operators * T::MaxSizeAtCompileTime);
// Scalar operators.
const ComplexType a = in[i];
const ComplexType b = in[i + 1];
out[out_idx++] = +a;
out[out_idx++] = -a;
out[out_idx++] = a + b;
out[out_idx++] = a + numext::real(b);
out[out_idx++] = numext::real(a) + b;
out[out_idx++] = a - b;
out[out_idx++] = a - numext::real(b);
out[out_idx++] = numext::real(a) - b;
out[out_idx++] = a * b;
out[out_idx++] = a * numext::real(b);
out[out_idx++] = numext::real(a) * b;
out[out_idx++] = a / b;
out[out_idx++] = a / numext::real(b);
out[out_idx++] = numext::real(a) / b;
#if !EIGEN_COMP_MSVC
out[out_idx] = a;
out[out_idx++] += b;
out[out_idx] = a;
out[out_idx++] -= b;
out[out_idx] = a;
out[out_idx++] *= b;
out[out_idx] = a;
out[out_idx++] /= b;
#endif
const ComplexType true_value = ComplexType(ValueType(1), ValueType(0));
const ComplexType false_value = ComplexType(ValueType(0), ValueType(0));
out[out_idx++] = (a == b ? true_value : false_value);
out[out_idx++] = (a == numext::real(b) ? true_value : false_value);
out[out_idx++] = (numext::real(a) == b ? true_value : false_value);
out[out_idx++] = (a != b ? true_value : false_value);
out[out_idx++] = (a != numext::real(b) ? true_value : false_value);
out[out_idx++] = (numext::real(a) != b ? true_value : false_value);
// Vector versions.
T x1(in + i);
T x2(in + i + 1);
const int res_size = T::MaxSizeAtCompileTime * num_scalar_operators;
const int size = T::MaxSizeAtCompileTime;
int block_idx = 0;
Map<VectorX<ComplexType>> res(out + out_idx, res_size);
res.segment(block_idx, size) = -x1;
block_idx += size;
res.segment(block_idx, size) = x1 + x2;
block_idx += size;
res.segment(block_idx, size) = x1 + x2.real();
block_idx += size;
res.segment(block_idx, size) = x1.real() + x2;
block_idx += size;
res.segment(block_idx, size) = x1 - x2;
block_idx += size;
res.segment(block_idx, size) = x1 - x2.real();
block_idx += size;
res.segment(block_idx, size) = x1.real() - x2;
block_idx += size;
res.segment(block_idx, size) = x1.array() * x2.array();
block_idx += size;
res.segment(block_idx, size) = x1.array() * x2.real().array();
block_idx += size;
res.segment(block_idx, size) = x1.real().array() * x2.array();
block_idx += size;
res.segment(block_idx, size) = x1.array() / x2.array();
block_idx += size;
res.segment(block_idx, size) = x1.array() / x2.real().array();
block_idx += size;
res.segment(block_idx, size) = x1.real().array() / x2.array();
block_idx += size;
#if !EIGEN_COMP_MSVC
res.segment(block_idx, size) = x1;
res.segment(block_idx, size) += x2;
block_idx += size;
res.segment(block_idx, size) = x1;
res.segment(block_idx, size) -= x2;
block_idx += size;
res.segment(block_idx, size) = x1;
res.segment(block_idx, size).array() *= x2.array();
block_idx += size;
res.segment(block_idx, size) = x1;
res.segment(block_idx, size).array() /= x2.array();
block_idx += size;
#endif
const T true_vector = T::Constant(true_value);
const T false_vector = T::Constant(false_value);
res.segment(block_idx, size) = (x1 == x2 ? true_vector : false_vector);
block_idx += size;
// Mixing types in equality comparison does not work.
// res.segment(block_idx, size) = (x1 == x2.real() ? true_vector : false_vector);
// block_idx += size;
// res.segment(block_idx, size) = (x1.real() == x2 ? true_vector : false_vector);
// block_idx += size;
res.segment(block_idx, size) = (x1 != x2 ? true_vector : false_vector);
block_idx += size;
// res.segment(block_idx, size) = (x1 != x2.real() ? true_vector : false_vector);
// block_idx += size;
// res.segment(block_idx, size) = (x1.real() != x2 ? true_vector : false_vector);
// block_idx += size;
}
};
template <typename T>
struct replicate {
EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
using namespace Eigen;
T x1(in + i);
int step = x1.size() * 4;
int stride = 3 * step;
typedef Map<Array<typename T::Scalar, Dynamic, Dynamic>> MapType;
MapType(out + i * stride + 0 * step, x1.rows() * 2, x1.cols() * 2) = x1.replicate(2, 2);
MapType(out + i * stride + 1 * step, x1.rows() * 3, x1.cols()) = in[i] * x1.colwise().replicate(3);
MapType(out + i * stride + 2 * step, x1.rows(), x1.cols() * 3) = in[i] * x1.rowwise().replicate(3);
}
};
template <typename T>
struct alloc_new_delete {
EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
int offset = 2 * i * T::MaxSizeAtCompileTime;
T* x = new T(in + offset);
Eigen::Map<T> u(out + offset);
u = *x;
delete x;
offset += T::MaxSizeAtCompileTime;
T* y = new T[1];
y[0] = T(in + offset);
Eigen::Map<T> v(out + offset);
v = y[0];
delete[] y;
}
};
template <typename T>
struct redux {
EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
using namespace Eigen;
int N = 10;
T x1(in + i);
out[i * N + 0] = x1.minCoeff();
out[i * N + 1] = x1.maxCoeff();
out[i * N + 2] = x1.sum();
out[i * N + 3] = x1.prod();
out[i * N + 4] = x1.matrix().squaredNorm();
out[i * N + 5] = x1.matrix().norm();
out[i * N + 6] = x1.colwise().sum().maxCoeff();
out[i * N + 7] = x1.rowwise().maxCoeff().sum();
out[i * N + 8] = x1.matrix().colwise().squaredNorm().sum();
}
};
template <typename T1, typename T2>
struct prod_test {
EIGEN_DEVICE_FUNC void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const {
using namespace Eigen;
typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3;
T1 x1(in + i);
T2 x2(in + i + 1);
Map<T3> res(out + i * T3::MaxSizeAtCompileTime);
res += in[i] * x1 * x2;
}
};
template <typename T1, typename T2>
struct diagonal {
EIGEN_DEVICE_FUNC void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const {
using namespace Eigen;
T1 x1(in + i);
Map<T2> res(out + i * T2::MaxSizeAtCompileTime);
res += x1.diagonal();
}
};
template <typename T>
struct eigenvalues_direct {
EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
using namespace Eigen;
typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
T M(in + i);
Map<Vec> res(out + i * Vec::MaxSizeAtCompileTime);
T A = M * M.adjoint();
SelfAdjointEigenSolver<T> eig;
eig.computeDirect(A);
res = eig.eigenvalues();
}
};
template <typename T>
struct eigenvalues {
EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
using namespace Eigen;
typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
T M(in + i);
Map<Vec> res(out + i * Vec::MaxSizeAtCompileTime);
T A = M * M.adjoint();
SelfAdjointEigenSolver<T> eig;
eig.compute(A);
res = eig.eigenvalues();
}
};
template <typename T>
struct matrix_inverse {
EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
using namespace Eigen;
T M(in + i);
Map<T> res(out + i * T::MaxSizeAtCompileTime);
res = M.inverse();
}
};
template <typename T>
struct numeric_limits_test {
EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const {
EIGEN_UNUSED_VARIABLE(in)
int out_idx = i * 5;
out[out_idx++] = numext::numeric_limits<float>::epsilon();
out[out_idx++] = (numext::numeric_limits<float>::max)();
out[out_idx++] = (numext::numeric_limits<float>::min)();
out[out_idx++] = numext::numeric_limits<float>::infinity();
out[out_idx++] = numext::numeric_limits<float>::quiet_NaN();
}
};
template <typename Type1, typename Type2>
bool verifyIsApproxWithInfsNans(const Type1& a, const Type2& b,
typename Type1::Scalar* = 0) // Enabled for Eigen's type only
{
if (a.rows() != b.rows()) {
return false;
}
if (a.cols() != b.cols()) {
return false;
}
for (Index r = 0; r < a.rows(); ++r) {
for (Index c = 0; c < a.cols(); ++c) {
if (a(r, c) != b(r, c) && !((numext::isnan)(a(r, c)) && (numext::isnan)(b(r, c))) &&
!test_isApprox(a(r, c), b(r, c))) {
return false;
}
}
}
return true;
}
template <typename Kernel, typename Input, typename Output>
void test_with_infs_nans(const Kernel& ker, int n, const Input& in, Output& out) {
Output out_ref, out_gpu;
#if !defined(EIGEN_GPU_COMPILE_PHASE)
out_ref = out_gpu = out;
#else
EIGEN_UNUSED_VARIABLE(in);
EIGEN_UNUSED_VARIABLE(out);
#endif
run_on_cpu(ker, n, in, out_ref);
run_on_gpu(ker, n, in, out_gpu);
#if !defined(EIGEN_GPU_COMPILE_PHASE)
verifyIsApproxWithInfsNans(out_ref, out_gpu);
#endif
}
EIGEN_DECLARE_TEST(gpu_basic) {
ei_test_init_gpu();
int nthreads = 100;
Eigen::VectorXf in, out;
Eigen::VectorXcf cfin, cfout;
#if !defined(EIGEN_GPU_COMPILE_PHASE)
int data_size = nthreads * 512;
in.setRandom(data_size);
out.setConstant(data_size, -1);
cfin.setRandom(data_size);
cfout.setConstant(data_size, -1);
#endif
CALL_SUBTEST(run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out));
CALL_SUBTEST(run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out));
#if !defined(EIGEN_USE_HIP)
// FIXME
// These subtests result in a compile failure on the HIP platform
//
// eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error:
// base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type'
// (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default
// constructor
CALL_SUBTEST(run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out));
CALL_SUBTEST(run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out));
// HIP does not support new/delete on device.
CALL_SUBTEST(run_and_compare_to_gpu(alloc_new_delete<Vector3f>(), nthreads, in, out));
#endif
CALL_SUBTEST(run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out));
CALL_SUBTEST(run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out));
CALL_SUBTEST(run_and_compare_to_gpu(prod_test<Matrix3f, Matrix3f>(), nthreads, in, out));
CALL_SUBTEST(run_and_compare_to_gpu(prod_test<Matrix4f, Vector4f>(), nthreads, in, out));
CALL_SUBTEST(run_and_compare_to_gpu(diagonal<Matrix3f, Vector3f>(), nthreads, in, out));
CALL_SUBTEST(run_and_compare_to_gpu(diagonal<Matrix4f, Vector4f>(), nthreads, in, out));
CALL_SUBTEST(run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out));
CALL_SUBTEST(run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out));
CALL_SUBTEST(run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out));
CALL_SUBTEST(run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out));
CALL_SUBTEST(run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out));
// Test std::complex.
CALL_SUBTEST(run_and_compare_to_gpu(complex_operators<Vector3cf>(), nthreads, cfin, cfout));
CALL_SUBTEST(test_with_infs_nans(complex_sqrt<Vector3cf>(), nthreads, cfin, cfout));
// numeric_limits
CALL_SUBTEST(test_with_infs_nans(numeric_limits_test<Vector3f>(), 1, in, out));
// These tests require dynamic-sized matrix multiplcation, which isn't currently
// supported on GPU.
// CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) );
// typedef Matrix<float,6,6> Matrix6f;
// CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix6f>(), nthreads, in, out) );
}