| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #if defined(EIGEN_TEST_PART_7) |
| |
| // ignore double-promotion diagnostic for clang and gcc, if we check for static assertion anyway: |
| // TODO do the same for MSVC? |
| #if defined(__clang__) |
| #if (__clang_major__ * 100 + __clang_minor__) >= 308 |
| #pragma clang diagnostic ignored "-Wdouble-promotion" |
| #endif |
| #elif defined(__GNUC__) |
| // TODO is there a minimal GCC version for this? At least g++-4.7 seems to be fine with this. |
| #pragma GCC diagnostic ignored "-Wdouble-promotion" |
| #endif |
| |
| #endif |
| |
| #if defined(EIGEN_TEST_PART_1) || defined(EIGEN_TEST_PART_2) || defined(EIGEN_TEST_PART_3) |
| |
| #ifndef EIGEN_DONT_VECTORIZE |
| #define EIGEN_DONT_VECTORIZE |
| #endif |
| |
| #endif |
| |
| static bool g_called; |
| #define EIGEN_SCALAR_BINARY_OP_PLUGIN \ |
| { g_called |= (!internal::is_same<LhsScalar, RhsScalar>::value); } |
| |
| #include "main.h" |
| |
| using namespace std; |
| |
| #define VERIFY_MIX_SCALAR(XPR, REF) \ |
| g_called = false; \ |
| VERIFY_IS_APPROX(XPR, REF); \ |
| VERIFY(g_called&& #XPR " not properly optimized"); |
| |
| template <int SizeAtCompileType> |
| void mixingtypes(int size = SizeAtCompileType) { |
| typedef std::complex<float> CF; |
| typedef std::complex<double> CD; |
| typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f; |
| typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d; |
| typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf; |
| typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd; |
| typedef Matrix<float, SizeAtCompileType, 1> Vec_f; |
| typedef Matrix<double, SizeAtCompileType, 1> Vec_d; |
| typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf; |
| typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd; |
| |
| Mat_f mf = Mat_f::Random(size, size); |
| Mat_d md = mf.template cast<double>(); |
| // Mat_d rd = md; |
| Mat_cf mcf = Mat_cf::Random(size, size); |
| Mat_cd mcd = mcf.template cast<complex<double> >(); |
| Mat_cd rcd = mcd; |
| Vec_f vf = Vec_f::Random(size, 1); |
| Vec_d vd = vf.template cast<double>(); |
| Vec_cf vcf = Vec_cf::Random(size, 1); |
| Vec_cd vcd = vcf.template cast<complex<double> >(); |
| float sf = internal::random<float>(); |
| double sd = internal::random<double>(); |
| complex<float> scf = internal::random<complex<float> >(); |
| complex<double> scd = internal::random<complex<double> >(); |
| |
| mf + mf; |
| |
| float epsf = std::sqrt(std::numeric_limits<float>::min EIGEN_EMPTY()); |
| double epsd = std::sqrt(std::numeric_limits<double>::min EIGEN_EMPTY()); |
| |
| while (std::abs(sf) < epsf) sf = internal::random<float>(); |
| while (std::abs(sd) < epsd) sd = internal::random<double>(); |
| while (std::abs(scf) < epsf) scf = internal::random<CF>(); |
| while (std::abs(scd) < epsd) scd = internal::random<CD>(); |
| |
| // check scalar products |
| VERIFY_MIX_SCALAR(vcf * sf, vcf * complex<float>(sf)); |
| VERIFY_MIX_SCALAR(sd * vcd, complex<double>(sd) * vcd); |
| VERIFY_MIX_SCALAR(vf * scf, vf.template cast<complex<float> >() * scf); |
| VERIFY_MIX_SCALAR(scd * vd, scd * vd.template cast<complex<double> >()); |
| |
| VERIFY_MIX_SCALAR(vcf * 2, vcf * complex<float>(2)); |
| VERIFY_MIX_SCALAR(vcf * 2.1, vcf * complex<float>(2.1)); |
| VERIFY_MIX_SCALAR(2 * vcf, vcf * complex<float>(2)); |
| VERIFY_MIX_SCALAR(2.1 * vcf, vcf * complex<float>(2.1)); |
| |
| // check scalar quotients |
| VERIFY_MIX_SCALAR(vcf / sf, vcf / complex<float>(sf)); |
| VERIFY_MIX_SCALAR(vf / scf, vf.template cast<complex<float> >() / scf); |
| VERIFY_MIX_SCALAR(vf.array() / scf, vf.template cast<complex<float> >().array() / scf); |
| VERIFY_MIX_SCALAR(scd / vd.array(), scd / vd.template cast<complex<double> >().array()); |
| |
| // check scalar increment |
| VERIFY_MIX_SCALAR(vcf.array() + sf, vcf.array() + complex<float>(sf)); |
| VERIFY_MIX_SCALAR(sd + vcd.array(), complex<double>(sd) + vcd.array()); |
| VERIFY_MIX_SCALAR(vf.array() + scf, vf.template cast<complex<float> >().array() + scf); |
| VERIFY_MIX_SCALAR(scd + vd.array(), scd + vd.template cast<complex<double> >().array()); |
| |
| // check scalar subtractions |
| VERIFY_MIX_SCALAR(vcf.array() - sf, vcf.array() - complex<float>(sf)); |
| VERIFY_MIX_SCALAR(sd - vcd.array(), complex<double>(sd) - vcd.array()); |
| VERIFY_MIX_SCALAR(vf.array() - scf, vf.template cast<complex<float> >().array() - scf); |
| VERIFY_MIX_SCALAR(scd - vd.array(), scd - vd.template cast<complex<double> >().array()); |
| |
| // check scalar powers |
| // NOTE: scalar exponents use a unary op. |
| VERIFY_IS_APPROX(pow(vcf.array(), sf), Eigen::pow(vcf.array(), complex<float>(sf))); |
| VERIFY_IS_APPROX(vcf.array().pow(sf), Eigen::pow(vcf.array(), complex<float>(sf))); |
| VERIFY_MIX_SCALAR(pow(sd, vcd.array()), Eigen::pow(complex<double>(sd), vcd.array())); |
| VERIFY_IS_APPROX(Eigen::pow(vf.array(), scf), Eigen::pow(vf.template cast<complex<float> >().array(), scf)); |
| VERIFY_IS_APPROX(vf.array().pow(scf), Eigen::pow(vf.template cast<complex<float> >().array(), scf)); |
| VERIFY_MIX_SCALAR(Eigen::pow(scd, vd.array()), Eigen::pow(scd, vd.template cast<complex<double> >().array())); |
| |
| // check dot product |
| vf.dot(vf); |
| VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >())); |
| |
| // check diagonal product |
| VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf); |
| VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >()); |
| VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal()); |
| VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal()); |
| |
| // check inner product |
| VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value()); |
| |
| // check outer product |
| VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval()); |
| |
| // coeff wise product |
| |
| VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval()); |
| |
| Mat_cd mcd2 = mcd; |
| VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >()); |
| |
| // check matrix-matrix products |
| VERIFY_IS_APPROX(sd * md * mcd, (sd * md).template cast<CD>().eval() * mcd); |
| VERIFY_IS_APPROX(sd * mcd * md, sd * mcd * md.template cast<CD>()); |
| VERIFY_IS_APPROX(scd * md * mcd, scd * md.template cast<CD>().eval() * mcd); |
| VERIFY_IS_APPROX(scd * mcd * md, scd * mcd * md.template cast<CD>()); |
| |
| VERIFY_IS_APPROX(sf * mf * mcf, sf * mf.template cast<CF>() * mcf); |
| VERIFY_IS_APPROX(sf * mcf * mf, sf * mcf * mf.template cast<CF>()); |
| VERIFY_IS_APPROX(scf * mf * mcf, scf * mf.template cast<CF>() * mcf); |
| VERIFY_IS_APPROX(scf * mcf * mf, scf * mcf * mf.template cast<CF>()); |
| |
| VERIFY_IS_APPROX(sd * md.adjoint() * mcd, (sd * md).template cast<CD>().eval().adjoint() * mcd); |
| VERIFY_IS_APPROX(sd * mcd.adjoint() * md, sd * mcd.adjoint() * md.template cast<CD>()); |
| VERIFY_IS_APPROX(sd * md.adjoint() * mcd.adjoint(), (sd * md).template cast<CD>().eval().adjoint() * mcd.adjoint()); |
| VERIFY_IS_APPROX(sd * mcd.adjoint() * md.adjoint(), sd * mcd.adjoint() * md.template cast<CD>().adjoint()); |
| VERIFY_IS_APPROX(sd * md * mcd.adjoint(), (sd * md).template cast<CD>().eval() * mcd.adjoint()); |
| VERIFY_IS_APPROX(sd * mcd * md.adjoint(), sd * mcd * md.template cast<CD>().adjoint()); |
| |
| VERIFY_IS_APPROX(sf * mf.adjoint() * mcf, (sf * mf).template cast<CF>().eval().adjoint() * mcf); |
| VERIFY_IS_APPROX(sf * mcf.adjoint() * mf, sf * mcf.adjoint() * mf.template cast<CF>()); |
| VERIFY_IS_APPROX(sf * mf.adjoint() * mcf.adjoint(), (sf * mf).template cast<CF>().eval().adjoint() * mcf.adjoint()); |
| VERIFY_IS_APPROX(sf * mcf.adjoint() * mf.adjoint(), sf * mcf.adjoint() * mf.template cast<CF>().adjoint()); |
| VERIFY_IS_APPROX(sf * mf * mcf.adjoint(), (sf * mf).template cast<CF>().eval() * mcf.adjoint()); |
| VERIFY_IS_APPROX(sf * mcf * mf.adjoint(), sf * mcf * mf.template cast<CF>().adjoint()); |
| |
| VERIFY_IS_APPROX(sf * mf * vcf, (sf * mf).template cast<CF>().eval() * vcf); |
| VERIFY_IS_APPROX(scf * mf * vcf, (scf * mf.template cast<CF>()).eval() * vcf); |
| VERIFY_IS_APPROX(sf * mcf * vf, sf * mcf * vf.template cast<CF>()); |
| VERIFY_IS_APPROX(scf * mcf * vf, scf * mcf * vf.template cast<CF>()); |
| |
| VERIFY_IS_APPROX(sf * vcf.adjoint() * mf, sf * vcf.adjoint() * mf.template cast<CF>().eval()); |
| VERIFY_IS_APPROX(scf * vcf.adjoint() * mf, scf * vcf.adjoint() * mf.template cast<CF>().eval()); |
| VERIFY_IS_APPROX(sf * vf.adjoint() * mcf, sf * vf.adjoint().template cast<CF>().eval() * mcf); |
| VERIFY_IS_APPROX(scf * vf.adjoint() * mcf, scf * vf.adjoint().template cast<CF>().eval() * mcf); |
| |
| VERIFY_IS_APPROX(sd * md * vcd, (sd * md).template cast<CD>().eval() * vcd); |
| VERIFY_IS_APPROX(scd * md * vcd, (scd * md.template cast<CD>()).eval() * vcd); |
| VERIFY_IS_APPROX(sd * mcd * vd, sd * mcd * vd.template cast<CD>().eval()); |
| VERIFY_IS_APPROX(scd * mcd * vd, scd * mcd * vd.template cast<CD>().eval()); |
| |
| VERIFY_IS_APPROX(sd * vcd.adjoint() * md, sd * vcd.adjoint() * md.template cast<CD>().eval()); |
| VERIFY_IS_APPROX(scd * vcd.adjoint() * md, scd * vcd.adjoint() * md.template cast<CD>().eval()); |
| VERIFY_IS_APPROX(sd * vd.adjoint() * mcd, sd * vd.adjoint().template cast<CD>().eval() * mcd); |
| VERIFY_IS_APPROX(scd * vd.adjoint() * mcd, scd * vd.adjoint().template cast<CD>().eval() * mcd); |
| |
| VERIFY_IS_APPROX(sd * vcd.adjoint() * md.template triangularView<Upper>(), |
| sd * vcd.adjoint() * md.template cast<CD>().eval().template triangularView<Upper>()); |
| VERIFY_IS_APPROX(scd * vcd.adjoint() * md.template triangularView<Lower>(), |
| scd * vcd.adjoint() * md.template cast<CD>().eval().template triangularView<Lower>()); |
| VERIFY_IS_APPROX(sd * vcd.adjoint() * md.transpose().template triangularView<Upper>(), |
| sd * vcd.adjoint() * md.transpose().template cast<CD>().eval().template triangularView<Upper>()); |
| VERIFY_IS_APPROX(scd * vcd.adjoint() * md.transpose().template triangularView<Lower>(), |
| scd * vcd.adjoint() * md.transpose().template cast<CD>().eval().template triangularView<Lower>()); |
| VERIFY_IS_APPROX(sd * vd.adjoint() * mcd.template triangularView<Lower>(), |
| sd * vd.adjoint().template cast<CD>().eval() * mcd.template triangularView<Lower>()); |
| VERIFY_IS_APPROX(scd * vd.adjoint() * mcd.template triangularView<Upper>(), |
| scd * vd.adjoint().template cast<CD>().eval() * mcd.template triangularView<Upper>()); |
| VERIFY_IS_APPROX(sd * vd.adjoint() * mcd.transpose().template triangularView<Lower>(), |
| sd * vd.adjoint().template cast<CD>().eval() * mcd.transpose().template triangularView<Lower>()); |
| VERIFY_IS_APPROX(scd * vd.adjoint() * mcd.transpose().template triangularView<Upper>(), |
| scd * vd.adjoint().template cast<CD>().eval() * mcd.transpose().template triangularView<Upper>()); |
| |
| // Not supported yet: trmm |
| // VERIFY_IS_APPROX(sd*mcd*md.template triangularView<Lower>(), sd*mcd*md.template cast<CD>().eval().template |
| // triangularView<Lower>()); VERIFY_IS_APPROX(scd*mcd*md.template triangularView<Upper>(), scd*mcd*md.template |
| // cast<CD>().eval().template triangularView<Upper>()); VERIFY_IS_APPROX(sd*md*mcd.template triangularView<Lower>(), |
| // sd*md.template cast<CD>().eval()*mcd.template triangularView<Lower>()); VERIFY_IS_APPROX(scd*md*mcd.template |
| // triangularView<Upper>(), scd*md.template cast<CD>().eval()*mcd.template triangularView<Upper>()); |
| |
| // Not supported yet: symv |
| // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template |
| // cast<CD>().eval().template selfadjointView<Upper>()); VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template |
| // selfadjointView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Lower>()); |
| // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Lower>(), sd*vd.adjoint().template |
| // cast<CD>().eval()*mcd.template selfadjointView<Lower>()); VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template |
| // selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>()); |
| |
| // Not supported yet: symm |
| // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template |
| // cast<CD>().eval().template selfadjointView<Upper>()); VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template |
| // selfadjointView<Upper>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>()); |
| // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Upper>(), sd*vd.adjoint().template |
| // cast<CD>().eval()*mcd.template selfadjointView<Upper>()); VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template |
| // selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>()); |
| |
| rcd.setZero(); |
| VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * mcd * md), |
| Mat_cd((sd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>())); |
| VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * md * mcd), |
| Mat_cd((sd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>())); |
| VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * mcd * md), |
| Mat_cd((scd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>())); |
| VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * md * mcd), |
| Mat_cd((scd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>())); |
| |
| VERIFY_IS_APPROX(md.array() * mcd.array(), md.template cast<CD>().eval().array() * mcd.array()); |
| VERIFY_IS_APPROX(mcd.array() * md.array(), mcd.array() * md.template cast<CD>().eval().array()); |
| |
| VERIFY_IS_APPROX(md.array() + mcd.array(), md.template cast<CD>().eval().array() + mcd.array()); |
| VERIFY_IS_APPROX(mcd.array() + md.array(), mcd.array() + md.template cast<CD>().eval().array()); |
| |
| VERIFY_IS_APPROX(md.array() - mcd.array(), md.template cast<CD>().eval().array() - mcd.array()); |
| VERIFY_IS_APPROX(mcd.array() - md.array(), mcd.array() - md.template cast<CD>().eval().array()); |
| |
| if (mcd.array().abs().minCoeff() > epsd) { |
| VERIFY_IS_APPROX(md.array() / mcd.array(), md.template cast<CD>().eval().array() / mcd.array()); |
| } |
| if (md.array().abs().minCoeff() > epsd) { |
| VERIFY_IS_APPROX(mcd.array() / md.array(), mcd.array() / md.template cast<CD>().eval().array()); |
| } |
| |
| if (md.array().abs().minCoeff() > epsd || mcd.array().abs().minCoeff() > epsd) { |
| VERIFY_IS_APPROX(md.array().pow(mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array())); |
| VERIFY_IS_APPROX(mcd.array().pow(md.array()), mcd.array().pow(md.template cast<CD>().eval().array())); |
| |
| VERIFY_IS_APPROX(pow(md.array(), mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array())); |
| VERIFY_IS_APPROX(pow(mcd.array(), md.array()), mcd.array().pow(md.template cast<CD>().eval().array())); |
| } |
| |
| rcd = mcd; |
| VERIFY_IS_APPROX(rcd = md, md.template cast<CD>().eval()); |
| rcd = mcd; |
| VERIFY_IS_APPROX(rcd += md, mcd + md.template cast<CD>().eval()); |
| rcd = mcd; |
| VERIFY_IS_APPROX(rcd -= md, mcd - md.template cast<CD>().eval()); |
| rcd = mcd; |
| VERIFY_IS_APPROX(rcd.array() *= md.array(), mcd.array() * md.template cast<CD>().eval().array()); |
| rcd = mcd; |
| if (md.array().abs().minCoeff() > epsd) { |
| VERIFY_IS_APPROX(rcd.array() /= md.array(), mcd.array() / md.template cast<CD>().eval().array()); |
| } |
| |
| rcd = mcd; |
| VERIFY_IS_APPROX(rcd.noalias() += md + mcd * md, |
| mcd + (md.template cast<CD>().eval()) + mcd * (md.template cast<CD>().eval())); |
| |
| VERIFY_IS_APPROX(rcd.noalias() = md * md, ((md * md).eval().template cast<CD>())); |
| rcd = mcd; |
| VERIFY_IS_APPROX(rcd.noalias() += md * md, mcd + ((md * md).eval().template cast<CD>())); |
| rcd = mcd; |
| VERIFY_IS_APPROX(rcd.noalias() -= md * md, mcd - ((md * md).eval().template cast<CD>())); |
| |
| VERIFY_IS_APPROX(rcd.noalias() = mcd + md * md, mcd + ((md * md).eval().template cast<CD>())); |
| rcd = mcd; |
| VERIFY_IS_APPROX(rcd.noalias() += mcd + md * md, mcd + mcd + ((md * md).eval().template cast<CD>())); |
| rcd = mcd; |
| VERIFY_IS_APPROX(rcd.noalias() -= mcd + md * md, -((md * md).eval().template cast<CD>())); |
| } |
| |
| EIGEN_DECLARE_TEST(mixingtypes) { |
| g_called = false; // Silence -Wunneeded-internal-declaration. |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(mixingtypes<3>()); |
| CALL_SUBTEST_2(mixingtypes<4>()); |
| CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE))); |
| |
| CALL_SUBTEST_4(mixingtypes<3>()); |
| CALL_SUBTEST_5(mixingtypes<4>()); |
| CALL_SUBTEST_6(mixingtypes<Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE))); |
| } |
| } |