| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <typeinfo> |
| |
| #if defined __GNUC__ && __GNUC__ >= 6 |
| #pragma GCC diagnostic ignored "-Wignored-attributes" |
| #endif |
| // using namespace Eigen; |
| |
| bool g_first_pass = true; |
| |
| namespace Eigen { |
| |
| namespace test { |
| |
| template <typename T, std::enable_if_t<NumTraits<T>::IsSigned, bool> = true> |
| T negate(const T& x) { |
| return -x; |
| } |
| |
| template <typename T, std::enable_if_t<!NumTraits<T>::IsSigned, bool> = true> |
| T negate(const T& x) { |
| return T(0) - x; |
| } |
| |
| template <typename T> |
| Map<const Array<unsigned char, sizeof(T), 1> > bits(const T& x) { |
| return Map<const Array<unsigned char, sizeof(T), 1> >(reinterpret_cast<const unsigned char*>(&x)); |
| } |
| |
| template <typename T> |
| bool biteq(T a, T b) { |
| return (bits(a) == bits(b)).all(); |
| } |
| |
| // NOTE: we disable inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU. |
| template <typename Scalar> |
| EIGEN_DONT_INLINE bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue) { |
| return internal::isMuchSmallerThan(a - b, refvalue); |
| } |
| |
| template <typename Scalar> |
| inline void print_mismatch(const Scalar* ref, const Scalar* vec, int size) { |
| std::cout << "ref: [" << Map<const Matrix<Scalar, 1, Dynamic> >(ref, size) << "]" |
| << " != vec: [" << Map<const Matrix<Scalar, 1, Dynamic> >(vec, size) << "]\n"; |
| } |
| |
| template <typename Scalar> |
| bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue) { |
| for (int i = 0; i < size; ++i) { |
| if (!isApproxAbs(a[i], b[i], refvalue)) { |
| print_mismatch(a, b, size); |
| std::cout << "Values differ in position " << i << ": " << a[i] << " vs " << b[i] << std::endl; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <typename Scalar> |
| bool areApprox(const Scalar* a, const Scalar* b, int size) { |
| for (int i = 0; i < size; ++i) { |
| if (numext::not_equal_strict(a[i], b[i]) && !internal::isApprox(a[i], b[i]) && |
| !((numext::isnan)(a[i]) && (numext::isnan)(b[i]))) { |
| print_mismatch(a, b, size); |
| std::cout << "Values differ in position " << i << ": " << a[i] << " vs " << b[i] << std::endl; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <typename Scalar> |
| bool areEqual(const Scalar* a, const Scalar* b, int size) { |
| for (int i = 0; i < size; ++i) { |
| if (numext::not_equal_strict(a[i], b[i]) && !((numext::isnan)(a[i]) && (numext::isnan)(b[i]))) { |
| print_mismatch(a, b, size); |
| std::cout << "Values differ in position " << i << ": " << a[i] << " vs " << b[i] << std::endl; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <typename Scalar> |
| bool areApprox(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& precision) { |
| for (int i = 0; i < size; ++i) { |
| if (numext::not_equal_strict(a[i], b[i]) && !internal::isApprox(a[i], b[i], precision) && |
| !((numext::isnan)(a[i]) && (numext::isnan)(b[i]))) { |
| print_mismatch(a, b, size); |
| std::cout << "Values differ in position " << i << ": " << a[i] << " vs " << b[i] << std::endl; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| #define CHECK_CWISE1(REFOP, POP) \ |
| { \ |
| for (int i = 0; i < PacketSize; ++i) ref[i] = REFOP(data1[i]); \ |
| internal::pstore(data2, POP(internal::pload<Packet>(data1))); \ |
| VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| // Checks component-wise for input of size N. All of data1, data2, and ref |
| // should have size at least ceil(N/PacketSize)*PacketSize to avoid memory |
| // access errors. |
| #define CHECK_CWISE1_N(REFOP, POP, N) \ |
| { \ |
| for (int i = 0; i < N; ++i) ref[i] = REFOP(data1[i]); \ |
| for (int j = 0; j < N; j += PacketSize) internal::pstore(data2 + j, POP(internal::pload<Packet>(data1 + j))); \ |
| VERIFY(test::areApprox(ref, data2, N) && #POP); \ |
| } |
| |
| // Checks component-wise for input of complex type of size N. The real and |
| // the imaginary part are compared separately, with 1ULP relaxed condition |
| // for the imaginary part. All of data1 data2, ref, realdata1 and realref |
| // should have size at least ceil(N/PacketSize)*PacketSize to avoid |
| // memory access errors. |
| #define CHECK_CWISE1_IM1ULP_N(REFOP, POP, N) \ |
| { \ |
| RealScalar eps_1ulp = RealScalar(1e1) * std::numeric_limits<RealScalar>::epsilon(); \ |
| for (int j = 0; j < N; j += PacketSize) \ |
| internal::pstore(data2 + j, internal::plog(internal::pload<Packet>(data1 + j))); \ |
| for (int i = 0; i < N; ++i) { \ |
| ref[i] = REFOP(data1[i]); \ |
| realref[i] = ref[i].imag(); \ |
| realdata[i] = data2[i].imag(); \ |
| } \ |
| VERIFY(test::areApprox(realdata, realref, N, eps_1ulp)); \ |
| for (int i = 0; i < N; ++i) { \ |
| realdata[i] = data2[i].real(); \ |
| realref[i] = ref[i].real(); \ |
| } \ |
| VERIFY(test::areApprox(realdata, realref, N)); \ |
| } |
| |
| template <bool Cond, typename Packet> |
| struct packet_helper { |
| template <typename T> |
| inline Packet load(const T* from) const { |
| return internal::pload<Packet>(from); |
| } |
| |
| template <typename T> |
| inline Packet loadu(const T* from) const { |
| return internal::ploadu<Packet>(from); |
| } |
| |
| template <typename T> |
| inline Packet load(const T* from, unsigned long long umask) const { |
| return internal::ploadu<Packet>(from, umask); |
| } |
| |
| template <typename T> |
| inline void store(T* to, const Packet& x) const { |
| internal::pstore(to, x); |
| } |
| |
| template <typename T> |
| inline void store(T* to, const Packet& x, unsigned long long umask) const { |
| internal::pstoreu(to, x, umask); |
| } |
| |
| template <typename T> |
| inline Packet& forward_reference(Packet& packet, T& /*scalar*/) const { |
| return packet; |
| } |
| }; |
| |
| template <typename Packet> |
| struct packet_helper<false, Packet> { |
| template <typename T> |
| inline T load(const T* from) const { |
| return *from; |
| } |
| |
| template <typename T> |
| inline T loadu(const T* from) const { |
| return *from; |
| } |
| |
| template <typename T> |
| inline T load(const T* from, unsigned long long) const { |
| return *from; |
| } |
| |
| template <typename T> |
| inline void store(T* to, const T& x) const { |
| *to = x; |
| } |
| |
| template <typename T> |
| inline void store(T* to, const T& x, unsigned long long) const { |
| *to = x; |
| } |
| |
| template <typename T> |
| inline T& forward_reference(Packet& /*packet*/, T& scalar) const { |
| return scalar; |
| } |
| }; |
| |
| #define CHECK_CWISE1_IF(COND, REFOP, POP) \ |
| if (COND) { \ |
| test::packet_helper<COND, Packet> h; \ |
| for (int i = 0; i < PacketSize; ++i) ref[i] = Scalar(REFOP(data1[i])); \ |
| h.store(data2, POP(h.load(data1))); \ |
| VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| #define CHECK_CWISE1_EXACT_IF(COND, REFOP, POP) \ |
| if (COND) { \ |
| test::packet_helper<COND, Packet> h; \ |
| for (int i = 0; i < PacketSize; ++i) ref[i] = Scalar(REFOP(data1[i])); \ |
| h.store(data2, POP(h.load(data1))); \ |
| VERIFY(test::areEqual(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| #define CHECK_CWISE2_IF(COND, REFOP, POP) \ |
| if (COND) { \ |
| test::packet_helper<COND, Packet> h; \ |
| for (int i = 0; i < PacketSize; ++i) ref[i] = Scalar(REFOP(data1[i], data1[i + PacketSize])); \ |
| h.store(data2, POP(h.load(data1), h.load(data1 + PacketSize))); \ |
| VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| // One input, one output by reference. |
| #define CHECK_CWISE1_BYREF1_IF(COND, REFOP, POP) \ |
| if (COND) { \ |
| test::packet_helper<COND, Packet> h; \ |
| for (int i = 0; i < PacketSize; ++i) ref[i] = Scalar(REFOP(data1[i], ref[i + PacketSize])); \ |
| Packet pout; \ |
| Scalar sout; \ |
| h.store(data2, POP(h.load(data1), h.forward_reference(pout, sout))); \ |
| h.store(data2 + PacketSize, h.forward_reference(pout, sout)); \ |
| VERIFY(test::areApprox(ref, data2, 2 * PacketSize) && #POP); \ |
| } |
| |
| #define CHECK_CWISE3_IF(COND, REFOP, POP) \ |
| if (COND) { \ |
| test::packet_helper<COND, Packet> h; \ |
| for (int i = 0; i < PacketSize; ++i) \ |
| ref[i] = Scalar(REFOP(data1[i], data1[i + PacketSize], data1[i + 2 * PacketSize])); \ |
| h.store(data2, POP(h.load(data1), h.load(data1 + PacketSize), h.load(data1 + 2 * PacketSize))); \ |
| VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| // Specialize the runall struct in your test file by defining run(). |
| template <typename Scalar, typename PacketType, bool IsComplex = NumTraits<Scalar>::IsComplex, |
| bool IsInteger = NumTraits<Scalar>::IsInteger> |
| struct runall; |
| |
| template <typename Scalar, typename PacketType = typename internal::packet_traits<Scalar>::type, |
| bool Vectorized = internal::packet_traits<Scalar>::Vectorizable, |
| bool HasHalf = !internal::is_same<typename internal::unpacket_traits<PacketType>::half, PacketType>::value> |
| struct runner; |
| |
| template <typename Scalar, typename PacketType> |
| struct runner<Scalar, PacketType, true, true> { |
| static void run() { |
| runall<Scalar, PacketType>::run(); |
| runner<Scalar, typename internal::unpacket_traits<PacketType>::half>::run(); |
| } |
| }; |
| |
| template <typename Scalar, typename PacketType> |
| struct runner<Scalar, PacketType, true, false> { |
| static void run() { runall<Scalar, PacketType>::run(); } |
| }; |
| |
| template <typename Scalar, typename PacketType> |
| struct runner<Scalar, PacketType, false, false> { |
| static void run() { runall<Scalar, PacketType>::run(); } |
| }; |
| |
| } // namespace test |
| } // namespace Eigen |