blob: 1f4a166a44d2cf8a6d740c77841cc81281320713 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TESTSPARSE_H
#define EIGEN_TESTSPARSE_H
#define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET
#include "main.h"
#ifdef min
#undef min
#endif
#ifdef max
#undef max
#endif
#include <unordered_map>
#define EIGEN_UNORDERED_MAP_SUPPORT
#include <Eigen/Cholesky>
#include <Eigen/LU>
#include <Eigen/Sparse>
enum { ForceNonZeroDiag = 1, MakeLowerTriangular = 2, MakeUpperTriangular = 4, ForceRealDiag = 8 };
/* Initializes both a sparse and dense matrix with same random values,
* and a ratio of \a density non zero entries.
* \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular
* allowing to control the shape of the matrix.
* \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero,
* and zero coefficients respectively.
*/
template <typename Scalar, int Opt1, int Opt2, typename StorageIndex>
void initSparse(double density, Matrix<Scalar, Dynamic, Dynamic, Opt1>& refMat,
SparseMatrix<Scalar, Opt2, StorageIndex>& sparseMat, int flags = 0,
std::vector<Matrix<StorageIndex, 2, 1> >* zeroCoords = 0,
std::vector<Matrix<StorageIndex, 2, 1> >* nonzeroCoords = 0) {
enum { IsRowMajor = SparseMatrix<Scalar, Opt2, StorageIndex>::IsRowMajor };
sparseMat.setZero();
// sparseMat.reserve(int(refMat.rows()*refMat.cols()*density));
int nnz = static_cast<int>((1.5 * density) * static_cast<double>(IsRowMajor ? refMat.cols() : refMat.rows()));
sparseMat.reserve(VectorXi::Constant(IsRowMajor ? refMat.rows() : refMat.cols(), nnz));
Index insert_count = 0;
for (Index j = 0; j < sparseMat.outerSize(); j++) {
// sparseMat.startVec(j);
for (Index i = 0; i < sparseMat.innerSize(); i++) {
Index ai(i), aj(j);
if (IsRowMajor) std::swap(ai, aj);
Scalar v = (internal::random<double>(0, 1) < density) ? internal::random<Scalar>() : Scalar(0);
if ((flags & ForceNonZeroDiag) && (i == j)) {
// FIXME: the following is too conservative
v = internal::random<Scalar>() * Scalar(3.);
v = v * v;
if (numext::real(v) > 0)
v += Scalar(5);
else
v -= Scalar(5);
}
if ((flags & MakeLowerTriangular) && aj > ai)
v = Scalar(0);
else if ((flags & MakeUpperTriangular) && aj < ai)
v = Scalar(0);
if ((flags & ForceRealDiag) && (i == j)) v = numext::real(v);
if (!numext::is_exactly_zero(v)) {
// sparseMat.insertBackByOuterInner(j,i) = v;
sparseMat.insertByOuterInner(j, i) = v;
++insert_count;
if (nonzeroCoords) nonzeroCoords->push_back(Matrix<StorageIndex, 2, 1>(ai, aj));
} else if (zeroCoords) {
zeroCoords->push_back(Matrix<StorageIndex, 2, 1>(ai, aj));
}
refMat(ai, aj) = v;
// make sure we only insert as many as the sparse matrix supports
if (insert_count == NumTraits<StorageIndex>::highest()) return;
}
}
// sparseMat.finalize();
}
template <typename Scalar, int Options, typename Index>
void initSparse(double density, Matrix<Scalar, Dynamic, 1>& refVec, SparseVector<Scalar, Options, Index>& sparseVec,
std::vector<int>* zeroCoords = 0, std::vector<int>* nonzeroCoords = 0) {
sparseVec.reserve(int(refVec.size() * density));
sparseVec.setZero();
for (int i = 0; i < refVec.size(); i++) {
Scalar v = (internal::random<double>(0, 1) < density) ? internal::random<Scalar>() : Scalar(0);
if (!numext::is_exactly_zero(v)) {
sparseVec.insertBack(i) = v;
if (nonzeroCoords) nonzeroCoords->push_back(i);
} else if (zeroCoords)
zeroCoords->push_back(i);
refVec[i] = v;
}
}
template <typename Scalar, int Options, typename Index>
void initSparse(double density, Matrix<Scalar, 1, Dynamic>& refVec, SparseVector<Scalar, Options, Index>& sparseVec,
std::vector<int>* zeroCoords = 0, std::vector<int>* nonzeroCoords = 0) {
sparseVec.reserve(int(refVec.size() * density));
sparseVec.setZero();
for (int i = 0; i < refVec.size(); i++) {
Scalar v = (internal::random<double>(0, 1) < density) ? internal::random<Scalar>() : Scalar(0);
if (v != Scalar(0)) {
sparseVec.insertBack(i) = v;
if (nonzeroCoords) nonzeroCoords->push_back(i);
} else if (zeroCoords)
zeroCoords->push_back(i);
refVec[i] = v;
}
}
#endif // EIGEN_TESTSPARSE_H