| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template <typename T> |
| EIGEN_DONT_INLINE T copy(const T& x) { |
| return x; |
| } |
| |
| template <typename MatrixType> |
| void stable_norm(const MatrixType& m) { |
| /* this test covers the following files: |
| StableNorm.h |
| */ |
| using std::abs; |
| using std::sqrt; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| bool complex_real_product_ok = true; |
| |
| // Check the basic machine-dependent constants. |
| { |
| int ibeta, it, iemin, iemax; |
| |
| ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers |
| it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa |
| iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent |
| iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent |
| |
| VERIFY((!(iemin > 1 - 2 * it || 1 + it > iemax || (it == 2 && ibeta < 5) || (it <= 4 && ibeta <= 3) || it < 2)) && |
| "the stable norm algorithm cannot be guaranteed on this computer"); |
| |
| Scalar inf = std::numeric_limits<RealScalar>::infinity(); |
| if (NumTraits<Scalar>::IsComplex && (numext::isnan)(inf * RealScalar(1))) { |
| complex_real_product_ok = false; |
| static bool first = true; |
| if (first) |
| std::cerr << "WARNING: compiler mess up complex*real product, " << inf << " * " << 1.0 << " = " |
| << inf * RealScalar(1) << std::endl; |
| first = false; |
| } |
| } |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| // get a non-zero random factor |
| Scalar factor = internal::random<Scalar>(); |
| while (numext::abs2(factor) < RealScalar(1e-4)) factor = internal::random<Scalar>(); |
| Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); |
| |
| factor = internal::random<Scalar>(); |
| while (numext::abs2(factor) < RealScalar(1e-4)) factor = internal::random<Scalar>(); |
| Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); |
| |
| Scalar one(1); |
| |
| MatrixType vzero = MatrixType::Zero(rows, cols), vrand = MatrixType::Random(rows, cols), vbig(rows, cols), |
| vsmall(rows, cols); |
| |
| vbig.fill(big); |
| vsmall.fill(small); |
| |
| VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); |
| VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm()); |
| VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm()); |
| VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm()); |
| |
| // test with expressions as input |
| VERIFY_IS_APPROX((one * vrand).stableNorm(), vrand.norm()); |
| VERIFY_IS_APPROX((one * vrand).blueNorm(), vrand.norm()); |
| VERIFY_IS_APPROX((one * vrand).hypotNorm(), vrand.norm()); |
| VERIFY_IS_APPROX((one * vrand + one * vrand - one * vrand).stableNorm(), vrand.norm()); |
| VERIFY_IS_APPROX((one * vrand + one * vrand - one * vrand).blueNorm(), vrand.norm()); |
| VERIFY_IS_APPROX((one * vrand + one * vrand - one * vrand).hypotNorm(), vrand.norm()); |
| |
| RealScalar size = static_cast<RealScalar>(m.size()); |
| |
| // test numext::isfinite |
| VERIFY(!(numext::isfinite)(std::numeric_limits<RealScalar>::infinity())); |
| VERIFY(!(numext::isfinite)(sqrt(-abs(big)))); |
| |
| // test overflow |
| VERIFY((numext::isfinite)(sqrt(size) * abs(big))); |
| VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size) * big)); // here the default norm must fail |
| VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size) * abs(big)); |
| VERIFY_IS_APPROX(vbig.blueNorm(), sqrt(size) * abs(big)); |
| VERIFY_IS_APPROX(vbig.hypotNorm(), sqrt(size) * abs(big)); |
| |
| // test underflow |
| VERIFY((numext::isfinite)(sqrt(size) * abs(small))); |
| VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())), abs(sqrt(size) * small)); // here the default norm must fail |
| VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size) * abs(small)); |
| VERIFY_IS_APPROX(vsmall.blueNorm(), sqrt(size) * abs(small)); |
| VERIFY_IS_APPROX(vsmall.hypotNorm(), sqrt(size) * abs(small)); |
| |
| // Test compilation of cwise() version |
| VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm()); |
| VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm()); |
| VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm()); |
| VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm()); |
| VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm()); |
| VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm()); |
| |
| // test NaN, +inf, -inf |
| MatrixType v; |
| Index i = internal::random<Index>(0, rows - 1); |
| Index j = internal::random<Index>(0, cols - 1); |
| |
| // NaN |
| { |
| v = vrand; |
| v(i, j) = std::numeric_limits<RealScalar>::quiet_NaN(); |
| VERIFY(!(numext::isfinite)(v.squaredNorm())); |
| VERIFY((numext::isnan)(v.squaredNorm())); |
| VERIFY(!(numext::isfinite)(v.norm())); |
| VERIFY((numext::isnan)(v.norm())); |
| VERIFY(!(numext::isfinite)(v.stableNorm())); |
| VERIFY((numext::isnan)(v.stableNorm())); |
| VERIFY(!(numext::isfinite)(v.blueNorm())); |
| VERIFY((numext::isnan)(v.blueNorm())); |
| VERIFY(!(numext::isfinite)(v.hypotNorm())); |
| VERIFY((numext::isnan)(v.hypotNorm())); |
| } |
| |
| // +inf |
| { |
| v = vrand; |
| v(i, j) = std::numeric_limits<RealScalar>::infinity(); |
| VERIFY(!(numext::isfinite)(v.squaredNorm())); |
| VERIFY(isPlusInf(v.squaredNorm())); |
| VERIFY(!(numext::isfinite)(v.norm())); |
| VERIFY(isPlusInf(v.norm())); |
| VERIFY(!(numext::isfinite)(v.stableNorm())); |
| if (complex_real_product_ok) { |
| VERIFY(isPlusInf(v.stableNorm())); |
| } |
| VERIFY(!(numext::isfinite)(v.blueNorm())); |
| VERIFY(isPlusInf(v.blueNorm())); |
| VERIFY(!(numext::isfinite)(v.hypotNorm())); |
| VERIFY(isPlusInf(v.hypotNorm())); |
| } |
| |
| // -inf |
| { |
| v = vrand; |
| v(i, j) = -std::numeric_limits<RealScalar>::infinity(); |
| VERIFY(!(numext::isfinite)(v.squaredNorm())); |
| VERIFY(isPlusInf(v.squaredNorm())); |
| VERIFY(!(numext::isfinite)(v.norm())); |
| VERIFY(isPlusInf(v.norm())); |
| VERIFY(!(numext::isfinite)(v.stableNorm())); |
| if (complex_real_product_ok) { |
| VERIFY(isPlusInf(v.stableNorm())); |
| } |
| VERIFY(!(numext::isfinite)(v.blueNorm())); |
| VERIFY(isPlusInf(v.blueNorm())); |
| VERIFY(!(numext::isfinite)(v.hypotNorm())); |
| VERIFY(isPlusInf(v.hypotNorm())); |
| } |
| |
| // mix |
| { |
| Index i2 = internal::random<Index>(0, rows - 1); |
| Index j2 = internal::random<Index>(0, cols - 1); |
| v = vrand; |
| v(i, j) = -std::numeric_limits<RealScalar>::infinity(); |
| v(i2, j2) = std::numeric_limits<RealScalar>::quiet_NaN(); |
| VERIFY(!(numext::isfinite)(v.squaredNorm())); |
| VERIFY((numext::isnan)(v.squaredNorm())); |
| VERIFY(!(numext::isfinite)(v.norm())); |
| VERIFY((numext::isnan)(v.norm())); |
| VERIFY(!(numext::isfinite)(v.stableNorm())); |
| VERIFY((numext::isnan)(v.stableNorm())); |
| VERIFY(!(numext::isfinite)(v.blueNorm())); |
| VERIFY((numext::isnan)(v.blueNorm())); |
| if (i2 != i || j2 != j) { |
| // hypot propagates inf over NaN. |
| VERIFY(!(numext::isfinite)(v.hypotNorm())); |
| VERIFY((numext::isinf)(v.hypotNorm())); |
| } else { |
| // inf is overwritten by NaN, expect norm to be NaN. |
| VERIFY(!(numext::isfinite)(v.hypotNorm())); |
| VERIFY((numext::isnan)(v.hypotNorm())); |
| } |
| } |
| |
| // stableNormalize[d] |
| { |
| VERIFY_IS_APPROX(vrand.stableNormalized(), vrand.normalized()); |
| MatrixType vcopy(vrand); |
| vcopy.stableNormalize(); |
| VERIFY_IS_APPROX(vcopy, vrand.normalized()); |
| VERIFY_IS_APPROX((vrand.stableNormalized()).norm(), RealScalar(1)); |
| VERIFY_IS_APPROX(vcopy.norm(), RealScalar(1)); |
| VERIFY_IS_APPROX((vbig.stableNormalized()).norm(), RealScalar(1)); |
| VERIFY_IS_APPROX((vsmall.stableNormalized()).norm(), RealScalar(1)); |
| RealScalar big_scaling = ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); |
| VERIFY_IS_APPROX(vbig / big_scaling, (vbig.stableNorm() * vbig.stableNormalized()).eval() / big_scaling); |
| VERIFY_IS_APPROX(vsmall, vsmall.stableNorm() * vsmall.stableNormalized()); |
| } |
| } |
| |
| void test_empty() { |
| Eigen::VectorXf empty(0); |
| VERIFY_IS_EQUAL(empty.stableNorm(), 0.0f); |
| } |
| |
| template <typename Scalar> |
| void test_hypot() { |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| Scalar factor = internal::random<Scalar>(); |
| while (numext::abs2(factor) < RealScalar(1e-4)) factor = internal::random<Scalar>(); |
| Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); |
| |
| factor = internal::random<Scalar>(); |
| while (numext::abs2(factor) < RealScalar(1e-4)) factor = internal::random<Scalar>(); |
| Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); |
| |
| Scalar one(1), zero(0), sqrt2(std::sqrt(2)), nan(std::numeric_limits<RealScalar>::quiet_NaN()); |
| |
| Scalar a = internal::random<Scalar>(-1, 1); |
| Scalar b = internal::random<Scalar>(-1, 1); |
| VERIFY_IS_APPROX(numext::hypot(a, b), std::sqrt(numext::abs2(a) + numext::abs2(b))); |
| VERIFY_IS_EQUAL(numext::hypot(zero, zero), zero); |
| VERIFY_IS_APPROX(numext::hypot(one, one), sqrt2); |
| VERIFY_IS_APPROX(numext::hypot(big, big), sqrt2 * numext::abs(big)); |
| VERIFY_IS_APPROX(numext::hypot(small, small), sqrt2 * numext::abs(small)); |
| VERIFY_IS_APPROX(numext::hypot(small, big), numext::abs(big)); |
| VERIFY((numext::isnan)(numext::hypot(nan, a))); |
| VERIFY((numext::isnan)(numext::hypot(a, nan))); |
| } |
| |
| EIGEN_DECLARE_TEST(stable_norm) { |
| CALL_SUBTEST_1(test_empty()); |
| |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_3(test_hypot<double>()); |
| CALL_SUBTEST_4(test_hypot<float>()); |
| CALL_SUBTEST_5(test_hypot<std::complex<double> >()); |
| CALL_SUBTEST_6(test_hypot<std::complex<float> >()); |
| |
| CALL_SUBTEST_1(stable_norm(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_2(stable_norm(Vector4d())); |
| CALL_SUBTEST_3(stable_norm(VectorXd(internal::random<int>(10, 2000)))); |
| CALL_SUBTEST_3(stable_norm(MatrixXd(internal::random<int>(10, 200), internal::random<int>(10, 200)))); |
| CALL_SUBTEST_4(stable_norm(VectorXf(internal::random<int>(10, 2000)))); |
| CALL_SUBTEST_5(stable_norm(VectorXcd(internal::random<int>(10, 2000)))); |
| CALL_SUBTEST_6(stable_norm(VectorXcf(internal::random<int>(10, 2000)))); |
| } |
| } |