blob: dd520f5410444e9367b3cd01fc6f5eaec39e2c3a [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef SVD_DEFAULT
#error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h
#endif
#ifndef SVD_FOR_MIN_NORM
#error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
#endif
#ifndef SVD_STATIC_OPTIONS
#error a macro SVD_STATIC_OPTIONS(MatrixType, Options) must be defined prior to including svd_common.h
#endif
#include "svd_fill.h"
#include "solverbase.h"
// Check that the matrix m is properly reconstructed and that the U and V factors are unitary
// The SVD must have already been computed.
template <typename SvdType, typename MatrixType>
void svd_check_full(const MatrixType& m, const SvdType& svd) {
Index rows = m.rows();
Index cols = m.cols();
enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
MatrixType sigma = MatrixType::Zero(rows, cols);
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
MatrixUType u = svd.matrixU();
MatrixVType v = svd.matrixV();
RealScalar scaling = m.cwiseAbs().maxCoeff();
if (scaling < (std::numeric_limits<RealScalar>::min)()) {
VERIFY(sigma.cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
} else {
VERIFY_IS_APPROX(m / scaling, u * (sigma / scaling) * v.adjoint());
}
VERIFY_IS_UNITARY(u);
VERIFY_IS_UNITARY(v);
}
// Compare partial SVD defined by computationOptions to a full SVD referenceSvd
template <typename MatrixType, typename SvdType, int Options>
void svd_compare_to_full(const MatrixType& m, const SvdType& referenceSvd) {
typedef typename MatrixType::RealScalar RealScalar;
Index rows = m.rows();
Index cols = m.cols();
Index diagSize = (std::min)(rows, cols);
RealScalar prec = test_precision<RealScalar>();
SVD_STATIC_OPTIONS(MatrixType, Options) svd(m);
VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
if (Options & (ComputeFullV | ComputeThinV)) {
VERIFY((svd.matrixV().adjoint() * svd.matrixV()).isIdentity(prec));
VERIFY_IS_APPROX(svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() *
svd.matrixV().leftCols(diagSize).adjoint(),
referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() *
referenceSvd.matrixV().leftCols(diagSize).adjoint());
}
if (Options & (ComputeFullU | ComputeThinU)) {
VERIFY((svd.matrixU().adjoint() * svd.matrixU()).isIdentity(prec));
VERIFY_IS_APPROX(svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() *
svd.matrixU().leftCols(diagSize).adjoint(),
referenceSvd.matrixU().leftCols(diagSize) *
referenceSvd.singularValues().cwiseAbs2().asDiagonal() *
referenceSvd.matrixU().leftCols(diagSize).adjoint());
}
// The following checks are not critical.
// For instance, with Dived&Conquer SVD, if only the factor 'V' is computed then different matrix-matrix product
// implementation will be used and the resulting 'V' factor might be significantly different when the SVD
// decomposition is not unique, especially with single precision float.
++g_test_level;
if (Options & ComputeFullU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
if (Options & ComputeThinU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
if (Options & ComputeFullV) VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
if (Options & ComputeThinV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
--g_test_level;
}
template <typename SvdType, typename MatrixType>
void svd_least_square(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
Index rows = m.rows();
Index cols = m.cols();
enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
SvdType svd(m);
if (internal::is_same<RealScalar, double>::value)
svd.setThreshold(RealScalar(1e-8));
else if (internal::is_same<RealScalar, float>::value)
svd.setThreshold(RealScalar(2e-4));
SolutionType x = svd.solve(rhs);
RealScalar residual = (m * x - rhs).norm();
RealScalar rhs_norm = rhs.norm();
if (!test_isMuchSmallerThan(residual, rhs.norm())) {
// ^^^ If the residual is very small, then we have an exact solution, so we are already good.
// evaluate normal equation which works also for least-squares solutions
if (internal::is_same<RealScalar, double>::value || svd.rank() == m.diagonal().size()) {
using std::sqrt;
// This test is not stable with single precision.
// This is probably because squaring m signicantly affects the precision.
if (internal::is_same<RealScalar, float>::value) ++g_test_level;
VERIFY_IS_APPROX(m.adjoint() * (m * x), m.adjoint() * rhs);
if (internal::is_same<RealScalar, float>::value) --g_test_level;
}
// Check that there is no significantly better solution in the neighborhood of x
for (Index k = 0; k < x.rows(); ++k) {
using std::abs;
SolutionType y(x);
y.row(k) = (RealScalar(1) + 2 * NumTraits<RealScalar>::epsilon()) * x.row(k);
RealScalar residual_y = (m * y - rhs).norm();
VERIFY(test_isMuchSmallerThan(abs(residual_y - residual), rhs_norm) || residual < residual_y);
if (internal::is_same<RealScalar, float>::value) ++g_test_level;
VERIFY(test_isApprox(residual_y, residual) || residual < residual_y);
if (internal::is_same<RealScalar, float>::value) --g_test_level;
y.row(k) = (RealScalar(1) - 2 * NumTraits<RealScalar>::epsilon()) * x.row(k);
residual_y = (m * y - rhs).norm();
VERIFY(test_isMuchSmallerThan(abs(residual_y - residual), rhs_norm) || residual < residual_y);
if (internal::is_same<RealScalar, float>::value) ++g_test_level;
VERIFY(test_isApprox(residual_y, residual) || residual < residual_y);
if (internal::is_same<RealScalar, float>::value) --g_test_level;
}
}
}
// check minimal norm solutions, the input matrix m is only used to recover problem size
template <typename MatrixType, int Options>
void svd_min_norm(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
Index cols = m.cols();
enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime };
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
// generate a full-rank m x n problem with m<n
enum {
RankAtCompileTime2 = ColsAtCompileTime == Dynamic ? Dynamic : (ColsAtCompileTime) / 2 + 1,
RowsAtCompileTime3 = ColsAtCompileTime == Dynamic ? Dynamic : ColsAtCompileTime + 1
};
typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
Index rank = RankAtCompileTime2 == Dynamic ? internal::random<Index>(1, cols) : Index(RankAtCompileTime2);
MatrixType2 m2(rank, cols);
int guard = 0;
do {
m2.setRandom();
} while (SVD_FOR_MIN_NORM(MatrixType2)(m2).setThreshold(test_precision<Scalar>()).rank() != rank && (++guard) < 10);
VERIFY(guard < 10);
RhsType2 rhs2 = RhsType2::Random(rank);
// use QR to find a reference minimal norm solution
HouseholderQR<MatrixType2T> qr(m2.adjoint());
Matrix<Scalar, Dynamic, 1> tmp =
qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().adjoint().solve(rhs2);
tmp.conservativeResize(cols);
tmp.tail(cols - rank).setZero();
SolutionType x21 = qr.householderQ() * tmp;
// now check with SVD
SVD_STATIC_OPTIONS(MatrixType2, Options) svd2(m2);
SolutionType x22 = svd2.solve(rhs2);
VERIFY_IS_APPROX(m2 * x21, rhs2);
VERIFY_IS_APPROX(m2 * x22, rhs2);
VERIFY_IS_APPROX(x21, x22);
// Now check with a rank deficient matrix
typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
Index rows3 = RowsAtCompileTime3 == Dynamic ? internal::random<Index>(rank + 1, 2 * cols) : Index(RowsAtCompileTime3);
Matrix<Scalar, RowsAtCompileTime3, Dynamic> C = Matrix<Scalar, RowsAtCompileTime3, Dynamic>::Random(rows3, rank);
MatrixType3 m3 = C * m2;
RhsType3 rhs3 = C * rhs2;
SVD_STATIC_OPTIONS(MatrixType3, Options) svd3(m3);
SolutionType x3 = svd3.solve(rhs3);
VERIFY_IS_APPROX(m3 * x3, rhs3);
VERIFY_IS_APPROX(m3 * x21, rhs3);
VERIFY_IS_APPROX(m2 * x3, rhs2);
VERIFY_IS_APPROX(x21, x3);
}
template <typename MatrixType, typename SolverType>
void svd_test_solvers(const MatrixType& m, const SolverType& solver) {
Index rows, cols, cols2;
rows = m.rows();
cols = m.cols();
if (MatrixType::ColsAtCompileTime == Dynamic) {
cols2 = internal::random<int>(2, EIGEN_TEST_MAX_SIZE);
} else {
cols2 = cols;
}
typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> CMatrixType;
check_solverbase<CMatrixType, MatrixType>(m, solver, rows, cols, cols2);
}
// work around stupid msvc error when constructing at compile time an expression that involves
// a division by zero, even if the numeric type has floating point
template <typename Scalar>
EIGEN_DONT_INLINE Scalar zero() {
return Scalar(0);
}
// workaround aggressive optimization in ICC
template <typename T>
EIGEN_DONT_INLINE T sub(T a, T b) {
return a - b;
}
// This function verifies we don't iterate infinitely on nan/inf values,
// and that info() returns InvalidInput.
template <typename MatrixType>
void svd_inf_nan() {
SVD_STATIC_OPTIONS(MatrixType, ComputeFullU | ComputeFullV) svd;
typedef typename MatrixType::Scalar Scalar;
Scalar some_inf = Scalar(1) / zero<Scalar>();
VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
svd.compute(MatrixType::Constant(10, 10, some_inf));
VERIFY(svd.info() == InvalidInput);
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
VERIFY(nan != nan);
svd.compute(MatrixType::Constant(10, 10, nan));
VERIFY(svd.info() == InvalidInput);
MatrixType m = MatrixType::Zero(10, 10);
m(internal::random<int>(0, 9), internal::random<int>(0, 9)) = some_inf;
svd.compute(m);
VERIFY(svd.info() == InvalidInput);
m = MatrixType::Zero(10, 10);
m(internal::random<int>(0, 9), internal::random<int>(0, 9)) = nan;
svd.compute(m);
VERIFY(svd.info() == InvalidInput);
// regression test for bug 791
m.resize(3, 3);
m << 0, 2 * NumTraits<Scalar>::epsilon(), 0.5, 0, -0.5, 0, nan, 0, 0;
svd.compute(m);
VERIFY(svd.info() == InvalidInput);
Scalar min = (std::numeric_limits<Scalar>::min)();
m.resize(4, 4);
m << 1, 0, 0, 0, 0, 3, 1, min, 1, 0, 1, nan, 0, nan, nan, 0;
svd.compute(m);
VERIFY(svd.info() == InvalidInput);
}
// Regression test for bug 286: JacobiSVD loops indefinitely with some
// matrices containing denormal numbers.
template <typename>
void svd_underoverflow() {
#if defined __INTEL_COMPILER
// shut up warning #239: floating point underflow
#pragma warning push
#pragma warning disable 239
#endif
Matrix2d M;
M << -7.90884e-313, -4.94e-324, 0, 5.60844e-313;
SVD_STATIC_OPTIONS(Matrix2d, ComputeFullU | ComputeFullV) svd;
svd.compute(M);
CALL_SUBTEST(svd_check_full(M, svd));
// Check all 2x2 matrices made with the following coefficients:
VectorXd value_set(9);
value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -4.94e-223, 4.94e-223;
Array4i id(0, 0, 0, 0);
int k = 0;
do {
M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
svd.compute(M);
CALL_SUBTEST(svd_check_full(M, svd));
id(k)++;
if (id(k) >= value_set.size()) {
while (k < 3 && id(k) >= value_set.size()) id(++k)++;
id.head(k).setZero();
k = 0;
}
} while ((id < int(value_set.size())).all());
#if defined __INTEL_COMPILER
#pragma warning pop
#endif
// Check for overflow:
Matrix3d M3;
M3 << 4.4331978442502944e+307, -5.8585363752028680e+307, 6.4527017443412964e+307, 3.7841695601406358e+307,
2.4331702789740617e+306, -3.5235707140272905e+307, -8.7190887618028355e+307, -7.3453213709232193e+307,
-2.4367363684472105e+307;
SVD_STATIC_OPTIONS(Matrix3d, ComputeFullU | ComputeFullV) svd3;
svd3.compute(M3); // just check we don't loop indefinitely
CALL_SUBTEST(svd_check_full(M3, svd3));
}
template <typename MatrixType>
void svd_all_trivial_2x2(void (*cb)(const MatrixType&)) {
MatrixType M;
VectorXd value_set(3);
value_set << 0, 1, -1;
Array4i id(0, 0, 0, 0);
int k = 0;
do {
M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
cb(M);
id(k)++;
if (id(k) >= value_set.size()) {
while (k < 3 && id(k) >= value_set.size()) id(++k)++;
id.head(k).setZero();
k = 0;
}
} while ((id < int(value_set.size())).all());
}
template <typename>
void svd_preallocate() {
Vector3f v(3.f, 2.f, 1.f);
MatrixXf m = v.asDiagonal();
internal::set_is_malloc_allowed(false);
VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
SVD_DEFAULT(MatrixXf) svd;
internal::set_is_malloc_allowed(true);
svd.compute(m);
VERIFY_IS_APPROX(svd.singularValues(), v);
VERIFY_RAISES_ASSERT(svd.matrixU());
VERIFY_RAISES_ASSERT(svd.matrixV());
SVD_STATIC_OPTIONS(MatrixXf, ComputeFullU | ComputeFullV) svd2(3, 3);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
VERIFY_IS_APPROX(svd2.singularValues(), v);
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
}
template <typename MatrixType, int QRPreconditioner = 0>
void svd_verify_assert_full_only(const MatrixType& input = MatrixType()) {
enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime };
typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType;
RhsType rhs = RhsType::Zero(input.rows());
MatrixType m(input.rows(), input.cols());
svd_fill_random(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd0;
VERIFY_RAISES_ASSERT((svd0.matrixU()));
VERIFY_RAISES_ASSERT((svd0.singularValues()));
VERIFY_RAISES_ASSERT((svd0.matrixV()));
VERIFY_RAISES_ASSERT((svd0.solve(rhs)));
VERIFY_RAISES_ASSERT((svd0.transpose().solve(rhs)));
VERIFY_RAISES_ASSERT((svd0.adjoint().solve(rhs)));
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd1(m);
VERIFY_RAISES_ASSERT((svd1.matrixU()));
VERIFY_RAISES_ASSERT((svd1.matrixV()));
VERIFY_RAISES_ASSERT((svd1.solve(rhs)));
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU) svdFullU(m);
VERIFY_RAISES_ASSERT((svdFullU.matrixV()));
VERIFY_RAISES_ASSERT((svdFullU.solve(rhs)));
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullV) svdFullV(m);
VERIFY_RAISES_ASSERT((svdFullV.matrixU()));
VERIFY_RAISES_ASSERT((svdFullV.solve(rhs)));
}
template <typename MatrixType, int QRPreconditioner = 0>
void svd_verify_assert(const MatrixType& input = MatrixType()) {
enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime };
typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType;
RhsType rhs = RhsType::Zero(input.rows());
MatrixType m(input.rows(), input.cols());
svd_fill_random(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU) svdThinU(m);
VERIFY_RAISES_ASSERT((svdThinU.matrixV()));
VERIFY_RAISES_ASSERT((svdThinU.solve(rhs)));
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinV) svdThinV(m);
VERIFY_RAISES_ASSERT((svdThinV.matrixU()));
VERIFY_RAISES_ASSERT((svdThinV.solve(rhs)));
svd_verify_assert_full_only<MatrixType, QRPreconditioner>(m);
}
template <typename MatrixType, int Options>
void svd_compute_checks(const MatrixType& m) {
typedef SVD_STATIC_OPTIONS(MatrixType, Options) SVDType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagAtCompileTime = internal::min_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime),
MatrixURowsAtCompileTime = SVDType::MatrixUType::RowsAtCompileTime,
MatrixUColsAtCompileTime = SVDType::MatrixUType::ColsAtCompileTime,
MatrixVRowsAtCompileTime = SVDType::MatrixVType::RowsAtCompileTime,
MatrixVColsAtCompileTime = SVDType::MatrixVType::ColsAtCompileTime
};
SVDType staticSvd(m);
VERIFY(MatrixURowsAtCompileTime == RowsAtCompileTime);
VERIFY(MatrixVRowsAtCompileTime == ColsAtCompileTime);
if (Options & ComputeThinU) VERIFY(MatrixUColsAtCompileTime == DiagAtCompileTime);
if (Options & ComputeFullU) VERIFY(MatrixUColsAtCompileTime == RowsAtCompileTime);
if (Options & ComputeThinV) VERIFY(MatrixVColsAtCompileTime == DiagAtCompileTime);
if (Options & ComputeFullV) VERIFY(MatrixVColsAtCompileTime == ColsAtCompileTime);
if (Options & (ComputeThinU | ComputeFullU))
VERIFY(staticSvd.computeU());
else
VERIFY(!staticSvd.computeU());
if (Options & (ComputeThinV | ComputeFullV))
VERIFY(staticSvd.computeV());
else
VERIFY(!staticSvd.computeV());
if (staticSvd.computeU()) VERIFY(staticSvd.matrixU().isUnitary());
if (staticSvd.computeV()) VERIFY(staticSvd.matrixV().isUnitary());
if (staticSvd.computeU() && staticSvd.computeV()) {
svd_test_solvers(m, staticSvd);
svd_least_square<SVDType, MatrixType>(m);
// svd_min_norm generates non-square matrices so it can't be used with NoQRPreconditioner
if ((Options & internal::QRPreconditionerBits) != NoQRPreconditioner) svd_min_norm<MatrixType, Options>(m);
}
}
template <typename MatrixType, int QRPreconditioner = 0>
void svd_thin_option_checks(const MatrixType& input) {
MatrixType m(input.rows(), input.cols());
svd_fill_random(m);
svd_compute_checks<MatrixType, QRPreconditioner>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinV>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV>(m);
typedef SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) FullSvdType;
FullSvdType fullSvd(m);
svd_check_full(m, fullSvd);
svd_compare_to_full<MatrixType, FullSvdType, QRPreconditioner | ComputeFullU | ComputeFullV>(m, fullSvd);
}
template <typename MatrixType, int QRPreconditioner = 0>
void svd_option_checks_full_only(const MatrixType& input) {
MatrixType m(input.rows(), input.cols());
svd_fill_random(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullV>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV>(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m);
svd_check_full(m, fullSvd);
}
template <typename MatrixType, int QRPreconditioner = 0>
void svd_check_max_size_matrix(int initialRows, int initialCols) {
enum {
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
int rows = MaxRowsAtCompileTime == Dynamic ? initialRows : (std::min)(initialRows, (int)MaxRowsAtCompileTime);
int cols = MaxColsAtCompileTime == Dynamic ? initialCols : (std::min)(initialCols, (int)MaxColsAtCompileTime);
MatrixType m(rows, cols);
svd_fill_random(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV) thinSvd(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV) mixedSvd1(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV) mixedSvd2(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m);
MatrixType n(MaxRowsAtCompileTime, MaxColsAtCompileTime);
svd_fill_random(n);
thinSvd.compute(n);
mixedSvd1.compute(n);
mixedSvd2.compute(n);
fullSvd.compute(n);
MatrixX<typename MatrixType::Scalar> dynamicMatrix(MaxRowsAtCompileTime + 1, MaxColsAtCompileTime + 1);
VERIFY_RAISES_ASSERT(thinSvd.compute(dynamicMatrix));
VERIFY_RAISES_ASSERT(mixedSvd1.compute(dynamicMatrix));
VERIFY_RAISES_ASSERT(mixedSvd2.compute(dynamicMatrix));
VERIFY_RAISES_ASSERT(fullSvd.compute(dynamicMatrix));
}
template <typename SvdType, typename MatrixType>
void svd_verify_constructor_options_assert(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
Index rows = m.rows();
enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
RhsType rhs(rows);
svd_fill_random(rhs);
SvdType svd;
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.singularValues())
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
VERIFY_RAISES_ASSERT(svd.transpose().solve(rhs))
VERIFY_RAISES_ASSERT(svd.adjoint().solve(rhs))
}
#undef SVD_DEFAULT
#undef SVD_FOR_MIN_NORM
#undef SVD_STATIC_OPTIONS