| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| using Eigen::RowMajor; |
| |
| |
| static void test_0d() |
| { |
| TensorFixedSize<float, Sizes<> > scalar1; |
| TensorFixedSize<float, Sizes<>, RowMajor> scalar2; |
| VERIFY_IS_EQUAL(scalar1.rank(), 0); |
| VERIFY_IS_EQUAL(scalar1.size(), 1); |
| VERIFY_IS_EQUAL(internal::array_prod(scalar1.dimensions()), 1); |
| |
| scalar1() = 7.0; |
| scalar2() = 13.0; |
| |
| // Test against shallow copy. |
| TensorFixedSize<float, Sizes<> > copy = scalar1; |
| VERIFY_IS_NOT_EQUAL(scalar1.data(), copy.data()); |
| VERIFY_IS_APPROX(scalar1(), copy()); |
| copy = scalar1; |
| VERIFY_IS_NOT_EQUAL(scalar1.data(), copy.data()); |
| VERIFY_IS_APPROX(scalar1(), copy()); |
| |
| TensorFixedSize<float, Sizes<> > scalar3 = scalar1.sqrt(); |
| TensorFixedSize<float, Sizes<>, RowMajor> scalar4 = scalar2.sqrt(); |
| VERIFY_IS_EQUAL(scalar3.rank(), 0); |
| VERIFY_IS_APPROX(scalar3(), sqrtf(7.0)); |
| VERIFY_IS_APPROX(scalar4(), sqrtf(13.0)); |
| |
| scalar3 = scalar1 + scalar2; |
| VERIFY_IS_APPROX(scalar3(), 7.0f + 13.0f); |
| } |
| |
| static void test_1d() |
| { |
| TensorFixedSize<float, Sizes<6> > vec1; |
| TensorFixedSize<float, Sizes<6>, RowMajor> vec2; |
| |
| VERIFY_IS_EQUAL((vec1.size()), 6); |
| // VERIFY_IS_EQUAL((vec1.dimensions()[0]), 6); |
| // VERIFY_IS_EQUAL((vec1.dimension(0)), 6); |
| |
| vec1(0) = 4.0; vec2(0) = 0.0; |
| vec1(1) = 8.0; vec2(1) = 1.0; |
| vec1(2) = 15.0; vec2(2) = 2.0; |
| vec1(3) = 16.0; vec2(3) = 3.0; |
| vec1(4) = 23.0; vec2(4) = 4.0; |
| vec1(5) = 42.0; vec2(5) = 5.0; |
| |
| // Test against shallow copy. |
| TensorFixedSize<float, Sizes<6> > copy = vec1; |
| VERIFY_IS_NOT_EQUAL(vec1.data(), copy.data()); |
| for (int i = 0; i < 6; ++i) { |
| VERIFY_IS_APPROX(vec1(i), copy(i)); |
| } |
| copy = vec1; |
| VERIFY_IS_NOT_EQUAL(vec1.data(), copy.data()); |
| for (int i = 0; i < 6; ++i) { |
| VERIFY_IS_APPROX(vec1(i), copy(i)); |
| } |
| |
| TensorFixedSize<float, Sizes<6> > vec3 = vec1.sqrt(); |
| TensorFixedSize<float, Sizes<6>, RowMajor> vec4 = vec2.sqrt(); |
| |
| VERIFY_IS_EQUAL((vec3.size()), 6); |
| VERIFY_IS_EQUAL(vec3.rank(), 1); |
| // VERIFY_IS_EQUAL((vec3.dimensions()[0]), 6); |
| // VERIFY_IS_EQUAL((vec3.dimension(0)), 6); |
| |
| VERIFY_IS_APPROX(vec3(0), sqrtf(4.0)); |
| VERIFY_IS_APPROX(vec3(1), sqrtf(8.0)); |
| VERIFY_IS_APPROX(vec3(2), sqrtf(15.0)); |
| VERIFY_IS_APPROX(vec3(3), sqrtf(16.0)); |
| VERIFY_IS_APPROX(vec3(4), sqrtf(23.0)); |
| VERIFY_IS_APPROX(vec3(5), sqrtf(42.0)); |
| |
| VERIFY_IS_APPROX(vec4(0), sqrtf(0.0)); |
| VERIFY_IS_APPROX(vec4(1), sqrtf(1.0)); |
| VERIFY_IS_APPROX(vec4(2), sqrtf(2.0)); |
| VERIFY_IS_APPROX(vec4(3), sqrtf(3.0)); |
| VERIFY_IS_APPROX(vec4(4), sqrtf(4.0)); |
| VERIFY_IS_APPROX(vec4(5), sqrtf(5.0)); |
| |
| vec3 = vec1 + vec2; |
| VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f); |
| VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f); |
| VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f); |
| VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f); |
| VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f); |
| VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f); |
| } |
| |
| static void test_tensor_map() |
| { |
| TensorFixedSize<float, Sizes<6> > vec1; |
| TensorFixedSize<float, Sizes<6>, RowMajor> vec2; |
| |
| vec1(0) = 4.0; vec2(0) = 0.0; |
| vec1(1) = 8.0; vec2(1) = 1.0; |
| vec1(2) = 15.0; vec2(2) = 2.0; |
| vec1(3) = 16.0; vec2(3) = 3.0; |
| vec1(4) = 23.0; vec2(4) = 4.0; |
| vec1(5) = 42.0; vec2(5) = 5.0; |
| |
| float data3[6]; |
| TensorMap<TensorFixedSize<float, Sizes<6> > > vec3(data3, 6); |
| vec3 = vec1.sqrt() + vec2; |
| |
| VERIFY_IS_APPROX(vec3(0), sqrtf(4.0)); |
| VERIFY_IS_APPROX(vec3(1), sqrtf(8.0) + 1.0f); |
| VERIFY_IS_APPROX(vec3(2), sqrtf(15.0) + 2.0f); |
| VERIFY_IS_APPROX(vec3(3), sqrtf(16.0) + 3.0f); |
| VERIFY_IS_APPROX(vec3(4), sqrtf(23.0) + 4.0f); |
| VERIFY_IS_APPROX(vec3(5), sqrtf(42.0) + 5.0f); |
| } |
| |
| static void test_2d() |
| { |
| float data1[6]; |
| TensorMap<TensorFixedSize<float, Sizes<2, 3> > > mat1(data1,2,3); |
| float data2[6]; |
| TensorMap<TensorFixedSize<float, Sizes<2, 3>, RowMajor> > mat2(data2,2,3); |
| |
| VERIFY_IS_EQUAL((mat1.size()), 2*3); |
| VERIFY_IS_EQUAL(mat1.rank(), 2); |
| // VERIFY_IS_EQUAL((mat1.dimension(0)), 2); |
| // VERIFY_IS_EQUAL((mat1.dimension(1)), 3); |
| |
| mat1(0,0) = 0.0; |
| mat1(0,1) = 1.0; |
| mat1(0,2) = 2.0; |
| mat1(1,0) = 3.0; |
| mat1(1,1) = 4.0; |
| mat1(1,2) = 5.0; |
| |
| mat2(0,0) = -0.0; |
| mat2(0,1) = -1.0; |
| mat2(0,2) = -2.0; |
| mat2(1,0) = -3.0; |
| mat2(1,1) = -4.0; |
| mat2(1,2) = -5.0; |
| |
| TensorFixedSize<float, Sizes<2, 3> > mat3; |
| TensorFixedSize<float, Sizes<2, 3>, RowMajor> mat4; |
| mat3 = mat1.abs(); |
| mat4 = mat2.abs(); |
| |
| VERIFY_IS_EQUAL((mat3.size()), 2*3); |
| // VERIFY_IS_EQUAL((mat3.dimension(0)), 2); |
| // VERIFY_IS_EQUAL((mat3.dimension(1)), 3); |
| |
| VERIFY_IS_APPROX(mat3(0,0), 0.0f); |
| VERIFY_IS_APPROX(mat3(0,1), 1.0f); |
| VERIFY_IS_APPROX(mat3(0,2), 2.0f); |
| VERIFY_IS_APPROX(mat3(1,0), 3.0f); |
| VERIFY_IS_APPROX(mat3(1,1), 4.0f); |
| VERIFY_IS_APPROX(mat3(1,2), 5.0f); |
| |
| VERIFY_IS_APPROX(mat4(0,0), 0.0f); |
| VERIFY_IS_APPROX(mat4(0,1), 1.0f); |
| VERIFY_IS_APPROX(mat4(0,2), 2.0f); |
| VERIFY_IS_APPROX(mat4(1,0), 3.0f); |
| VERIFY_IS_APPROX(mat4(1,1), 4.0f); |
| VERIFY_IS_APPROX(mat4(1,2), 5.0f); |
| } |
| |
| static void test_3d() |
| { |
| TensorFixedSize<float, Sizes<2, 3, 7> > mat1; |
| TensorFixedSize<float, Sizes<2, 3, 7>, RowMajor> mat2; |
| |
| VERIFY_IS_EQUAL((mat1.size()), 2*3*7); |
| VERIFY_IS_EQUAL(mat1.rank(), 3); |
| // VERIFY_IS_EQUAL((mat1.dimension(0)), 2); |
| // VERIFY_IS_EQUAL((mat1.dimension(1)), 3); |
| // VERIFY_IS_EQUAL((mat1.dimension(2)), 7); |
| |
| float val = 0.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| mat1(i,j,k) = val; |
| mat2(i,j,k) = val; |
| val += 1.0f; |
| } |
| } |
| } |
| |
| TensorFixedSize<float, Sizes<2, 3, 7> > mat3; |
| mat3 = mat1.sqrt(); |
| TensorFixedSize<float, Sizes<2, 3, 7>, RowMajor> mat4; |
| mat4 = mat2.sqrt(); |
| |
| VERIFY_IS_EQUAL((mat3.size()), 2*3*7); |
| // VERIFY_IS_EQUAL((mat3.dimension(0)), 2); |
| // VERIFY_IS_EQUAL((mat3.dimension(1)), 3); |
| // VERIFY_IS_EQUAL((mat3.dimension(2)), 7); |
| |
| |
| val = 0.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_APPROX(mat3(i,j,k), sqrtf(val)); |
| VERIFY_IS_APPROX(mat4(i,j,k), sqrtf(val)); |
| val += 1.0f; |
| } |
| } |
| } |
| } |
| |
| |
| static void test_array() |
| { |
| TensorFixedSize<float, Sizes<2, 3, 7> > mat1; |
| float val = 0.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| mat1(i,j,k) = val; |
| val += 1.0f; |
| } |
| } |
| } |
| |
| TensorFixedSize<float, Sizes<2, 3, 7> > mat3; |
| mat3 = mat1.pow(3.5f); |
| |
| val = 0.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_APPROX(mat3(i,j,k), powf(val, 3.5f)); |
| val += 1.0f; |
| } |
| } |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_fixed_size) |
| { |
| CALL_SUBTEST(test_0d()); |
| CALL_SUBTEST(test_1d()); |
| CALL_SUBTEST(test_tensor_map()); |
| CALL_SUBTEST(test_2d()); |
| CALL_SUBTEST(test_3d()); |
| CALL_SUBTEST(test_array()); |
| } |