| // Copyright 2016 The Fuchsia Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <lib/media/cpp/timeline_rate.h> |
| |
| #include <zircon/assert.h> |
| |
| #include <limits> |
| #include <utility> |
| |
| namespace media { |
| |
| namespace { |
| |
| // Calculates the greatest common denominator (factor) of two values. |
| template <typename T> |
| T BinaryGcd(T a, T b) { |
| if (a == 0) { |
| return b; |
| } |
| |
| if (b == 0) { |
| return a; |
| } |
| |
| // Remove and count the common factors of 2. |
| uint8_t twos; |
| for (twos = 0; ((a | b) & 1) == 0; ++twos) { |
| a >>= 1; |
| b >>= 1; |
| } |
| |
| // Get rid of the non-common factors of 2 in a. a is non-zero, so this |
| // terminates. |
| while ((a & 1) == 0) { |
| a >>= 1; |
| } |
| |
| do { |
| // Get rid of the non-common factors of 2 in b. b is non-zero, so this |
| // terminates. |
| while ((b & 1) == 0) { |
| b >>= 1; |
| } |
| |
| // Apply the Euclid subtraction method. |
| if (a > b) { |
| std::swap(a, b); |
| } |
| |
| b = b - a; |
| } while (b != 0); |
| |
| // Multiply in the common factors of two. |
| return a << twos; |
| } |
| |
| // Reduces the ratio of *numerator and *denominator. |
| template <typename T> |
| void ReduceRatio(T* numerator, T* denominator) { |
| ZX_DEBUG_ASSERT(numerator != nullptr); |
| ZX_DEBUG_ASSERT(denominator != nullptr); |
| ZX_DEBUG_ASSERT(*denominator != 0); |
| |
| T gcd = BinaryGcd(*numerator, *denominator); |
| |
| if (gcd == 0) { |
| *denominator = 1; |
| return; |
| } |
| |
| if (gcd == 1) { |
| return; |
| } |
| |
| *numerator = *numerator / gcd; |
| *denominator = *denominator / gcd; |
| } |
| |
| template void ReduceRatio<uint64_t>(uint64_t* numerator, uint64_t* denominator); |
| template void ReduceRatio<uint32_t>(uint32_t* numerator, uint32_t* denominator); |
| |
| // Scales a uint64_t value by the ratio of two uint32_t values. If round_up is |
| // true, the result is rounded up rather than down. overflow is set to indicate |
| // overflow. |
| uint64_t ScaleUInt64(uint64_t value, uint32_t subject_delta, uint32_t reference_delta, |
| bool round_up, bool* overflow) { |
| ZX_DEBUG_ASSERT(reference_delta != 0u); |
| ZX_DEBUG_ASSERT(overflow != nullptr); |
| |
| constexpr uint64_t kLow32Bits = 0xffffffffu; |
| constexpr uint64_t kHigh32Bits = kLow32Bits << 32u; |
| |
| // high and low are the product of the subject_delta and the high and low |
| // halves |
| // (respectively) of value. |
| uint64_t high = subject_delta * (value >> 32u); |
| uint64_t low = subject_delta * (value & kLow32Bits); |
| // Ignoring overflow and remainder, the result we want is: |
| // ((high << 32) + low) / reference_delta. |
| |
| // Move the high end of low into the low end of high. |
| high += low >> 32u; |
| low = low & kLow32Bits; |
| // Ignoring overflow and remainder, the result we want is still: |
| // ((high << 32) + low) / reference_delta. |
| |
| // When we divide high by reference_delta, there'll be a remainder. Make |
| // that the high end of low, which is currently all zeroes. |
| low |= (high % reference_delta) << 32u; |
| |
| // Determine if we need to round up when we're done: |
| round_up = round_up && (low % reference_delta) != 0; |
| |
| // Do the division. |
| high /= reference_delta; |
| low /= reference_delta; |
| |
| // If high's top 32 bits aren't all zero, we have overflow. |
| if (high & kHigh32Bits) { |
| *overflow = true; |
| return 0; |
| } |
| |
| uint64_t result = (high << 32u) | low; |
| if (round_up) { |
| if (result == std::numeric_limits<int64_t>::max()) { |
| *overflow = true; |
| return 0; |
| } |
| ++result; |
| } |
| |
| *overflow = false; |
| return result; |
| } |
| |
| } // namespace |
| |
| // static |
| const TimelineRate TimelineRate::Zero = TimelineRate(0, 1); |
| |
| // static |
| const TimelineRate TimelineRate::NsPerSecond = TimelineRate(1000000000L, 1); |
| |
| // static |
| void TimelineRate::Reduce(uint32_t* subject_delta, uint32_t* reference_delta) { |
| ReduceRatio(subject_delta, reference_delta); |
| } |
| |
| // static |
| void TimelineRate::Product(uint32_t a_subject_delta, uint32_t a_reference_delta, |
| uint32_t b_subject_delta, uint32_t b_reference_delta, |
| uint32_t* product_subject_delta, uint32_t* product_reference_delta, |
| bool exact) { |
| ZX_DEBUG_ASSERT(a_reference_delta != 0); |
| ZX_DEBUG_ASSERT(b_reference_delta != 0); |
| ZX_DEBUG_ASSERT(product_subject_delta != nullptr); |
| ZX_DEBUG_ASSERT(product_reference_delta != nullptr); |
| |
| uint64_t subject_delta = static_cast<uint64_t>(a_subject_delta) * b_subject_delta; |
| uint64_t reference_delta = static_cast<uint64_t>(a_reference_delta) * b_reference_delta; |
| |
| ReduceRatio(&subject_delta, &reference_delta); |
| |
| if (subject_delta > std::numeric_limits<uint32_t>::max() || |
| reference_delta > std::numeric_limits<uint32_t>::max()) { |
| ZX_DEBUG_ASSERT(!exact); |
| |
| do { |
| subject_delta >>= 1; |
| reference_delta >>= 1; |
| } while (subject_delta > std::numeric_limits<uint32_t>::max() || |
| reference_delta > std::numeric_limits<uint32_t>::max()); |
| |
| if (reference_delta == 0) { |
| // Product is larger than we can represent. Return the largest value we |
| // can represent. |
| *product_subject_delta = std::numeric_limits<uint32_t>::max(); |
| *product_reference_delta = 1; |
| return; |
| } |
| } |
| |
| *product_subject_delta = static_cast<uint32_t>(subject_delta); |
| *product_reference_delta = static_cast<uint32_t>(reference_delta); |
| } |
| |
| // static |
| int64_t TimelineRate::Scale(int64_t value, uint32_t subject_delta, uint32_t reference_delta) { |
| static constexpr uint64_t abs_of_min_int64 = |
| static_cast<uint64_t>(std::numeric_limits<int64_t>::max()) + 1; |
| |
| ZX_DEBUG_ASSERT(reference_delta != 0u); |
| |
| bool overflow; |
| |
| uint64_t abs_result; |
| |
| if (value >= 0) { |
| abs_result = |
| ScaleUInt64(static_cast<uint64_t>(value), subject_delta, reference_delta, false, &overflow); |
| } else if (value == std::numeric_limits<int64_t>::min()) { |
| abs_result = ScaleUInt64(abs_of_min_int64, subject_delta, reference_delta, true, &overflow); |
| } else { |
| abs_result = |
| ScaleUInt64(static_cast<uint64_t>(-value), subject_delta, reference_delta, true, &overflow); |
| } |
| |
| if (overflow) { |
| return TimelineRate::kOverflow; |
| } |
| |
| // Make sure we won't overflow when we cast to int64_t. |
| if (abs_result > static_cast<uint64_t>(std::numeric_limits<int64_t>::max())) { |
| if (value < 0 && abs_result == abs_of_min_int64) { |
| return std::numeric_limits<int64_t>::min(); |
| } |
| return TimelineRate::kOverflow; |
| } |
| |
| return value >= 0 ? static_cast<int64_t>(abs_result) : -static_cast<int64_t>(abs_result); |
| } |
| |
| } // namespace media |